
Computers & Security 116 (2022) 102686 

Contents lists available at ScienceDirect 

Computers & Security 

journal homepage: www.elsevier.com/locate/cose 

A novel deep framework for dynamic malware detection based on API 

sequence intrinsic features 

Ce Li a , b , Qiujian Lv 

a , Ning Li a , Yan Wang 

a , b , ∗, Degang Sun 

a , b , Yuanyuan Qiao 

c 

a Institute of Information Engineering, Chinese Academy of Science, Beijing, China 
b School of Cyber Security, University of Chinese Academy of Science, Beijing, China 
c School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China 

a r t i c l e i n f o 

Article history: 

Received 31 October 2021 

Revised 24 January 2022 

Accepted 7 March 2022 

Available online 8 March 2022 

Keywords: 

Malware detection 

API sequence 

Deep learning 

Intrinsic features 

Feature fusion 

a b s t r a c t 

Dynamic malware detection executes the software in a secured virtual environment and monitors its run- 

time behavior. This technique widely uses API sequence analysis to identify whether the running software 

is malicious or not. However, existing solutions typically only consider the API name or frequency of API 

usage, and the feature mining of API sequence is not sufficient, which leads some malware to escape 

from being detected. In this paper, we propose a novel malware detection framework using deep learn- 

ing models to capture and combine more meaningful features which are called intrinsic features of the 

API sequence. Specifically, we first apply embedding and convolutional layers to conduct a joint repre- 

sentation of multiple APIs to represent the software behavior. Secondly, we use the category, action, and 

operation object of the API to represent the semantic information of each API call. Finally, we use the 

Bi-LSTM module to mine the relationship information between APIs. Our proposed model achieves an 

accuracy of 0.9731 and an F1-score of 0.9724 on a large real dataset, which outperforms baselines signif- 

icantly. We also conduct ablation studies to prove the effectiveness of our intrinsic features. 

© 2022 Elsevier Ltd. All rights reserved. 

1

c

n

i

c

e

c

t

t

o

F

fi

t

a

o

l

(

(

Z  

s

a

2

a

e

b

m

i

(

e

Z

d

u

Q  

h

0

. Introduction 

Malicious software (Malware) has seen rapid expansion in re- 

ent years due to the swift growth in computer and Internet tech- 

ology. Large-scale malware attacks ( Li et al., 2017 ), in which crim- 

nals use scripts to generate large amounts of malware automati- 

ally, are currently the main means of malware intrusion. Differ- 

nt kinds of malware such as worm, virus, Trojan, and backdoor 

hange very quickly and their variants have become the biggest 

hreat to cyber security. According to an AV-TEST report from 2019 

o 2020, 1 more than 114 million new malware were developed and 

ver 78 percent of them have been applied to Windows systems. 

urthermore, over 43 million 0-day malware were recorded in the 

rst quarter of 2020. Therefore, it is necessary to devise an effec- 

ive automatic detection method to counter the malware attacks. 

Malware detection approaches can be divided into static 

nd dynamic malware analysis. Static analysis methods 
∗ Corresponding author at: Institute of Information Engineering, Chinese Academy 

f Science, Beijing, China. 

E-mail addresses: lice@iie.ac.cn (C. Li), lvqiujian@iie.ac.cn (Q. Lv), 

ining01@iie.ac.cn (N. Li), wangyan@iie.ac.cn (Y. Wang), sundegang@iie.ac.cn 

D. Sun), yyqiao@bupt.edu.cn (Y. Qiao). 
1 https://www.av-test.org/de/news/fakten- analysen- zur- bedrohungslage- der- av- test- sich

A

w

A

F

a

ttps://doi.org/10.1016/j.cose.2022.102686 

167-4048/© 2022 Elsevier Ltd. All rights reserved. 
erheitsreport- 2019- 2020/ . 

 Ahmadi et al., 2016; Christodorescu and Jha, 2003; Ding and 

hu, 2019; Nair et al., 2010; Vasan et al., 2020 ) try to analyze the

ource code but malware authors can obfuscate the contents of 

 binary and make static data extraction meaningless ( Han et al., 

019; You and Yim, 2010 ). On the contrary, dynamic malware 

nalysis extracts data (including system calls, network traffic pack- 

ts, file or registry changes, memory dumps, etc.) while running 

inary programs ( Galal et al., 2016; Salehi et al., 2017 ). Malware 

ust unpack itself while executing. Its original code will be loaded 

nto the main memory and it will perform the real behaviors 

 Raff and Nicholas, 2020 ). Therefore, dynamic malware analysis is 

ffective against various code obfuscation techniques ( Amer and 

elinka, 2020; Damodaran et al., 2017 ). In this paper, we focus on 

ynamic malware analysis. 

The Application Programming Interface (API) calls are widely 

sed in dynamic analysis ( Alazab et al., 2011; Elhadi et al., 2014; 

iao et al., 2013; Zhang et al., 2020 ). A running software calls many

PIs which characterize all the software operations including net- 

ork access, file creation and modification, etc. These APIs form an 

PI sequence which is often used to analyze the software behavior . 

or example, on Windows platform, the API sequence of RegCre- 

teKey, RegSetValue , and RegCloseKey always represents the behav- 

https://doi.org/10.1016/j.cose.2022.102686
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102686&domain=pdf
mailto:lice@iie.ac.cn
mailto:lvqiujian@iie.ac.cn
mailto:lining01@iie.ac.cn
mailto:wangyan@iie.ac.cn
mailto:sundegang@iie.ac.cn
mailto:yyqiao@bupt.edu.cn
https://www.av-test.org/de/news/fakten-analysen-zur-bedrohungslage-der-av-test-sicherheitsreport-2019-2020/
https://doi.org/10.1016/j.cose.2022.102686


C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

i

t

o

s

d

A

t

t

i

c

h

(

(

w

L

m

e

n

f

(

F

i  

t

u

m

i

t

t

fi

s

f

s

s

s

n

b

p

t

a

S

d

v

F

i

t

2

w

t

m

2

w

c

2

i

t

S

a

s

r

2

d

h

S

w

q

n

w

l

w

w

c

n

c

f

m

m

2

e

t

m

2

r

m

r

t

a

or of operating a registry key, and these three APIs are often used 

ogether. Thus, it is important to find a type of joint representation 

f multiple APIs because a single API does not mean whether the 

oftware behavior is malicious or not. Moreover, APIs are not in- 

ependent of each other in an API sequence. In other words, each 

PI in the sequence is usually associated with some past or fu- 

ure APIs. Such relationship may contains some contextual patterns 

hat perform malicious activities ( Amer and Zelinka, 2020 ). Thus, it 

s meaningful to capture the relationship information between API 

alls. 

There are many approaches based on artificial intelligence that 

ave been applied to analyze API sequences. Machine learning 

ML) algorithms such as K-Nearest Neighbor (KNN), Naive Bayes 

NB), Decision Tree (DT), and Support Vector Machine (SVM) are 

idely used in API sequence analysis ( Fan et al., 2018; Kim, 2018; 

in et al., 2018 ). Researchers are also exploring deep learning (DL) 

odels for feature mining to improve detection accuracy ( Agrawal 

t al., 2018; Çatak et al., 2020; Kolosnjaji et al., 2016 ). Unfortu- 

ately, most of these studies often only consider the API name or 

requency of API usage while ignoring some semantic information 

including category, action, operation object, etc) of the API calls. 

or instance, the API RegSetValue indicates setting a value for a reg- 

stry key, and its action is set , the operation object is the value of

he registry key. These semantic information can helps the detector 

nderstand the meaning of the API. Therefore, traditional detection 

ethods without API semantic information are still inadequate. 

The software behavior, semantic information and relationship 

nformation mentioned above can not be obtained directly from 

he API sequence, but they can be represented after the represen- 

ation learning on a large number of API sequence corpus. We de- 

ne the features obtained by representation learning as the intrin- 

ic features of the API sequence. In this paper, we propose a deep 

ramework for dynamic malware detection based on multiple API 

equence intrinsic features. Through mining the meaningful intrin- 

ic features, our proposed framework is able to detect whether the 

oftware is malicious or not. To justify the idea, we collect a large 

umber of software samples and use our framework to distinguish 

etween malware and goodware. The results show that our pro- 

osed work outperforms the previous works in using API sequence 

o detect the malware. 

Our contributions in this paper are as follows: 

• We devise a deep framework for dynamic malware detection 

based on API sequence intrinsic features. We also create a 

dataset which contains different kinds of malware and benign 

software (Goodware) samples to evaluate our model. We open 

source our dataset and code on Github. 2 

• We design an encoder to represent the API sequence intrinsic 

features including the software behavior, the semantic infor- 

mation of APIs, and the relationship between API calls. To the 

best of our knowledge, this research is the first to apply multi- 

feature based deep learning to represent and combine these 3 

kinds of intrinsic features of the API sequence. Extensive exper- 

iments verify the effectiveness of our proposed method. 

• We conduct ablation studies and analyze the contribution of 

each intrinsic feature to the model. It provides valuable insights 

in the API sequence feature learning. 

The rest of this paper is organized as follows: related work 

nd background of previous research are discussed in Section 2 . 

ection 3 introduces some necessary preliminaries. Section 4 intro- 

uces our proposed method of malware detection. Section 5 pro- 

ides the detailed experimental setup. Section 6 shows the exper- 
2 https://github.com/friendllcc/Malware- Detection- API- Sequence- Intrinsic- 

eatures . 

K

b

p

q

2 
ment results and model evaluation. Section 7 presents the limita- 

ions and our future work. Finally, Section 8 concludes this paper. 

. Related work 

In this section, we firstly review the research of API based mal- 

are detection. Then, we present the intrinsic feature represen- 

ation of API sequence. Finally, we introduce deep learning-based 

alware detection approaches. 

.1. API based malware detection methods 

Among many API sequence based malware detection research 

orks, the methods based on frequency statistics and sequence en- 

oding are widely used. 

.1.1. Frequency statistics based methods 

Detecting malware by counting the frequency of API usage 

s a kind of traditional method. Tian et al. (2010) use a hash 

able to store all the API strings with their global frequency. 

ami et al. (2010) calculate the frequency of API calls in each file 

nd analyze statistical results. However, this kind of method as- 

umes that the APIs are independent of each other and ignores the 

elationship between API calls. 

.1.2. Sequence encoding based methods 

Sequence encoding tends to represent the API sequence as stan- 

ard data formats such as vector, matrix, etc. The encoding scheme 

as a direct impact on the final detection performance. Tran and 

ato (2017) use paragraph vector to divide API sequences and give 

eights to each API using term frequency-inverse document fre- 

uency (TF-IDF). The objective of TF-IDF is to convert n-grams into 

umerical input features where machine learning algorithms can 

ork. However, TF-IDF methods do not preserve any contextual re- 

ationship that exists between APIs. Amer and Zelinka (2020) use 

ord embedding method to represent every API name as a vector 

hich contains contextual information. However, this method only 

onsider the API name and the extraction of intrinsic features is 

ot comprehensive enough. 

Compared to frequency statistics based methods, sequence en- 

oding based methods can process API sequences better. Inspired 

rom sequence encoding based methods, researchers can extract 

ore meaningful intrinsic features to improve the performance of 

alware detection. 

.2. Intrinsic feature representation of API sequence 

Many studies try to express API sequence intrinsic features to 

nhance the performance of detection models. The intrinsic fea- 

ures mainly contains the software behavior, the semantic infor- 

ation of APIs, and the relationship between API calls. 

.2.1. Software behavior 

An API represents a software operation, and multiple operations 

epresent a software behavior. In order to learn the behavior infor- 

ation, Lin et al. (2015) define malware behavior vectors to rep- 

esent multiple APIs and calculate the cosine similarity to classify 

he malware. Similarly, Kim et al. (2016) use multiple sequence 

lignment to generate malware behavioral feature chain patterns. 

i et al. (2015) extract common API sequence patterns of malicious 

ehavior from malware in different categories. However, these ap- 

roaches ignore the semantic information of each API in the se- 

uence. 

https://github.com/friendllcc/Malware-Detection-API-Sequence-Intrinsic-Features


C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

2

s

c

a

v

m

p

L

a

u

s

k

2

t

Ç

M

c

r

w

Z

i

r

i

m

t

c

Z

h

s

2

m

b

P

d

t

f

r

f

b

f

t

3

s

l

3

l

s

d

d

s

m

t

i  

i

q  

m

y

H

t

d

t

3

w

f

t

L  

v

a

m

i

f

a

C

S

C

o

o

a

h

T

4

w

w

M

w

P

c

4

f

t

t

I

f

s

w

s

.2.2. Semantic information 

The semantic information represents the meaning of each API, 

uch as category, action, and operation object. These information 

an help the detection model understand the API sequence more 

ccurately. Zhang et al. (2020) propose a pre-defined semantic 

ector of API calls. They extract name, category, and API argu- 

ents of the API calls using hash approach. However, this ap- 

roach ignores the actions and operation objects of the API calls. 

iu et al. (2011) define a behavior operation set which includes file 

ctions, process actions, network actions and registry actions. They 

se the action and operation object of API call to represent the 

emantic information. Unfortunately, this method extract only 18 

inds of actions and the information captured is not enough. 

.2.3. Relationship between API calls 

The relationship between API calls is a common in- 

rinsic feature and many studies confirm its effectiveness. 

atak et al. (2020) use embedding layer and Long Short-Term 

emory (LSTM) model to capture relationship between API 

alls in the API sequence. However, this approach uses unidi- 

ectional LSTM which only consider the relationship information 

ith the past APIs while ignoring the future APIs. Amer and 

elinka (2020) group related APIs based on their contextual sim- 

larity and generate a simple call graph that characterizes the 

unning process of malware. However, this ”contextual similarity”

s gradually weakened in the process of model building due to the 

odel simplification. 

Malware usually tries to escape from being tracked or de- 

ected. Using only one type of intrinsic features is not enough to 

orrectly detect malware in a real-world environment ( Amer and 

elinka, 2020 ). Thus, it is important to design algorithms that can 

andle multiple categories of intrinsic features extracted from API 

equences. 

.3. Deep learning-based approaches 

The attention to deep learning in the malware detection com- 

unity is increasing. David and Netanyahu (2015) use a deep 

elief network (DBN) to process the software running reports. 

ascanu et al. (2015) use recurrent neural networks (RNNs) to pre- 

ict the next API call based on the previous APIs. They also feed 

he outputs of RNNs into a max-pooling layer to transform features 

or malware classification. Agrawal et al. (2018) propose a feature 

epresentation based on one-hot vectors from API name and top N

requent n-gram of API arguments. They combine several LSTMs to 

uild a classifier. 

Deep learning-based methods are able to achieve more flexible 

eature representation. In this paper, we use deep learning models 

o represent and combine multiple API sequence intrinsic features. 

. Preliminaries 

In this section, we mainly briefly describe two feature repre- 

entation models adopted in our method: one-dimensional convo- 

utional neural network (1D CNN) and LSTM. 

.1. 1D CNN 

Convolutional neural network (CNN) models are developed for 

earning an internal representation of a two-dimensional input 

uch as image data. This same process can be harnessed on one- 

imensional sequences of data, such as in the case of API sequence 

ata for malware detection. 

1D CNN model ( Kim, 2014 ) learns to extract features from 

equences of observations and represent the features as feature 
3 
aps. It applies a convolution layer to construct a joint represen- 

ation of multiple items in the input sequence. For example, for a 

nput sequence { x 1 , x 2 , x 3 , x 4 , . . . , } ( x i is the feature vector of the

tem i ), when the size of the convolution filter W is 3, the se- 

uence will be express as { y 123 , y 234 , . . . } , where y i jk is the feature

ap of x i , x j , x k : 

 i jk = f ( W · [ x i � x j � x k ] + b) . (1) 

ere � is the feature concatenation operator, b is a bias term and 

f is a non-linear activation function. 

The benefit of using the 1D CNN for sequence classification is 

hat it can learn from the raw time series data directly, and in turn 

oes not require domain expertise to manually engineer input fea- 

ures. 

.2. LSTM 

LSTM ( Staudemeyer and Morris, 2019 ) is a recurrent neural net- 

ork architecture. It is able to capture the long-term context in- 

ormation through several gates designed to control the informa- 

ion transmission status ( Pichotta and Mooney, 2016 ). The input of 

STM model is a sequence { x 1 , x 2 , x 3 , . . . } , where x i is the feature

ector of the item i . Let W i , W f , W C , W o be the weight matrices 

nd b i , b f , b C , b o be the offset vectors. The calculation of LSTM at 

oment t has two steps. Firstly, calculate the input gate as 

 t = σ ( W i · [ h t−1 , x t ] + b i ) , (2) 

orget gate as 

f t = σ ( W f · [ h t−1 , x t ] + b f ) , (3) 

nd memory gate of the middle state value as 

˜ 
 t = tanh ( W C · [ h t−1 , x t ] + b C ) . (4) 

econdly, calculate the memory gate status values as 

 t = i t ∗ ˜ C t + f t ∗ C t−1 , (5) 

utput gate as 

 t = σ ( W o · [ h t−1 , x t ] + b o ) , (6) 

nd hidden layer output as 

 t = o t ∗ tanh ( C t ) . (7) 

he hidden layer output h t contains the information from the past. 

. Proposed method 

In this section, we introduce our proposed method for mal- 

are detection. First, Section 4.1 introduces our detection frame- 

ork which mainly contains an intrinsic feature encoder and a 

ulti-Layer Perceptron (MLP) classifier. Second, in Sections 4.2 –4.4 , 

e elaborate our intrinsic feature encoding methods including API 

hrase, Semantic Chain , and Bi-LSTM . Finally, the specific model ar- 

hitecture will be given in Section 4.5 . 

.1. System overview 

To construct an effective detector, we implement the system 

ramework shown in Fig. 1 . This framework aims to characterize 

he multiple intrinsic features from the API sequence, and combine 

hem to identify whether the running software is malicious or not. 

n this paper, we mainly focus on the malware on Windows plat- 

orm. 

The Windows portable executable (PE) files are used as input 

amples. Then, a sandbox is applied to record the API sequence 

hile running each sample. An intrinsic feature encoder is de- 

igned to represent and combine 3 kinds of intrinsic features of 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Fig. 1. System Framework. The system mainly consists of two parts. (1) Intrinsic Feature Encoder: to represent and combine 3 kinds of intrinsic features. (2) Classifier & 

Encoder Training: to build a model which consists of the intrinsic feature encoder and a classifier, then train this model. 

t

t

u

c

q

a

u

s

L

4

p

r

A

l  

s

w  

m

4

s

g

p

f  

d

s

s

A

w

s

4

S

A

h

f

l

t

A

a

m

H

s

b

p

m

i

e

p

t

p

a

r

4

i

m

m

s

a

t

a

l

4

n

he API sequence including software behavior, semantic informa- 

ion, and relationship between APIs. The encoder has three mod- 

les: 

• API Phrase: By using embedding and convolutional layers, this 

module represents the software behavior as API phrase feature 

maps. 

• Semantic Chain: This module first constructs a semantic chain to 

represent semantic information of the API sequence. Then, the 

semantic chain is represented as feature maps by embedding 

and convolutional layers. 

• Bi-LSTM: Bidirectional L STM (Bi-L STM) module is applied to 

capture the relationship between API calls. 

An MLP classifier is connected after the intrinsic feature en- 

oder, and outputs the final classification result of each input se- 

uence. The complete model includes the intrinsic feature encoder 

nd a binary classifier. After model training, this framework can be 

sed to detect whether a new software sample is malware. 

In the following Sections 4.2 –4.4 , we will introduce our intrin- 

ic feature encoder including API Phrase, Semantic Chain, and Bi- 

STM. 

.2. API Phrase for software behavior representation 

In this subsection, we introduce API Phrase module which de- 

icts how to represent the software behavior. 

API Phrase which represents software behavior is a type of joint 

epresentation of multiple API calls. This module has two steps: 

PI embedding and multi-layer convolution. First, an embedding 

ayer is used to turn every API name into a vector and turn the API

equence into a sequence matrix. Then, three convolutional layers 

ith filter sizes of 3, 4, and 5 are applied to convert the sequence

atrix into feature maps. 

.2.1. API embedding 

Embedding layer ( Ketkar and Santana, 2017 ) is a feature repre- 

entation method that is widely used in the field of natural lan- 

uage processing. In our framework, the embedding layer is ap- 

lied in order to turn each API name into a k -dimensional dense 

eature vector. As shown in Fig. 2 (a) Step-1, let a i ∈ R 

k be the k -

imensional feature vector corresponding to the i th API in the API 

equence. Then, an API sequence which consists of n APIs is repre- 

ented as 

 1: n = a 1 � a 2 � · · · � a n , (8) 
4 
here � is the concatenation operator and A 1: n ∈ R 

n ×k is a n × k 

equence matrix. 

.2.2. Multi-layer convolution 

The 1D CNN ( Kim, 2014; Zhang and Wallace, 2017 ) described in 

ection 3.1 is applied to transform the sequence matrix into the 

PI phrase feature maps which can characterize the software be- 

avior (as shown in Fig. 2 (a) Step-2). Generally, let A i : i + j ∈ R 

j×k re- 

er to the concatenation of vectors from a i to a i + j . A convolutional 

ayer involves a filter W a ∈ R 

h ×k , where h is the number of vec- 

ors this filter can process each time, and is also the length of the 

PI phrase. The filter W a ∈ R 

h ×k is applied to h vectors from a i to 

 i + h −1 and a feature m i is generated from A i : i + h −1 by 

 i = f ( W a · A i : i + h −1 + b a ) . (9) 

ere b a ∈ R is a bias term and f is a non-linear activation function 

uch as the hyperbolic tangent. This filter is applied to each possi- 

le window of APIs in the sequence { A 1: h , A 2: h +1 , . . . , A n −h +1: n } to 

roduce a feature map 

 = [ m 1 , m 2 , . . . , m n −h +1 ] . (10) 

API phrases of different lengths represent behavioral character- 

stics of different granularities. Multi-layer convolution applies sev- 

ral convolutional layers with different filter sizes to extract API 

hrases of different lengths. Fig. 2 (b) shows the example of using 

hree convolution layers with different filter sizes. In this exam- 

le, three convolution layers with filter size h of 3, 4, and 5 are 

pplied to extract API phrases of different lengths in order to rep- 

esent more behavioral features. 

.3. Semantic chain for semantic information representation 

Semantic Chain module is designed to represent the semantic 

nformation of each API. As shown in Fig. 3 , the Semantic Chain 

odule extracts API semantic information in two steps: (1) se- 

antic chain construction and (2) feature map representation of 

emantic chain. Step-1 aims to extract the action, operation object, 

nd category of each API call and construct a semantic chain for 

he API sequence. Step-2 attempts to represent the semantic chain 

s feature maps by using an embedding layer and a convolutional 

ayer. 

.3.1. Semantic chain construction 

When naming APIs, operating system developers adopt strict 

aming conventions, and they usually take the semantic-based 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Fig. 2. (a) API Phrase Feature Representation: An embedding layer turns API i to a vector a i . A convolutional layer represents multiple APIs ( a i , a i +1 , . . . , a i −h +1 ) as a feature 

m i . (b) API Phrase Feature Representation with Multi-layer Convolution: In the convolution operation stage, three convolution layers with filter size h = 3 , 4 , 5 are applied to 

extract API phrases of different lengths. 

Fig. 3. Semantic Chain Feature Representation: Step-1 re-describes API i as q i and constructs a semantic chain for the API sequence. Step-2 represents the semantic chain as 

feature maps by using an embedding layer and a convolutional layer. 

n

s

o

t

a  

A

q

n

b

t

i

c

t

i

r  

c

s

t

(

t  

l

d

• Other: This API has no impact on the system. 
aming methods ( Hart, 1997 ). Thus, the API name string contains 

ome semantic information that can reflect the API’s action and 

peration object. To capture the semantic information contained in 

he API name, we introduce a template to re-describe each API as 

 4-tuple. Let q i be the 4-tuple corresponding to the i -th API in the

PI sequence. The q i is represented as 

 i = < action i , ob ject i , class i , category i > . (11) 

The value of action i and ob ject i are extracted from the API 

ame. We firstly analyze the most commonly used 312 APIs em- 

odied in the sandbox and 70 words (mostly verbs) are extracted 

o form an action dictionary (AD). The content of AD is shown 

n Table 1 and these words describe the core actions of API 

alls. Then, for any API, its action i and ob ject i can be obtained 

hrough Algorithm 1 . For example, for the API ‘RegCreateKeyExW’, 
5 
ts action i is ‘Create’ and ob ject i is ‘RegKeyEx’. The reason why we 

emove the ‘W’ or ‘A’ at the end of API name string is that this

haracter represents different code styles and has no effect on the 

emantic information. 

In the process of invading a computer system, malware needs 

o query or modify the system resources to achieve intrusion 

 Mylonas and Gritzalis, 2012 ). Depending on the impact degree of 

he API on the system, we define the value of class i as one of ‘Se-

ect’, ‘Update’ and ‘Other’ ( Eq. (12) ). The meaning of each value is 

efined as follows: 

• Select: The impact of this API is to query the system resources. 

• Update: The impact of this API is to modify the system re- 

sources. 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Table 1 

Action dictionary (AD). 

Content of Action Dictionary (AD) #Instance 

‘Acquire’, ‘Add’, ‘Allocate’, ‘Assign’, ‘Close’, ‘Compress’, ‘Connect’, ‘Control’, ‘Copy’, ‘Crack’, ‘Create’, ‘Decode’, ‘Decompress’, ‘Decrypt’, ‘Delete’, 

’Download’, ’Draw’, ’Duplicate’, ’Encode’, ’Encryp’, ’Exec’, ’Exit’, ’Export’, ’Enum’, ’Free’, ’Find’, ’First’, ’Get’, ’Gen’, ’Hash’, ’Initialize’,’Is’, ’Load’, 

’Lookup’, ’Make’, ’Map’, ’Move’, ’Next’, ’Obtain’, ’Open’, ’Put’, ’Protect’, ’Queue’, ’Query’, ’Read’, ’Recv’, ’Register’, ’Remove’, ’Resume’, ’Save’, ’Send’, 

’Set’, ’Socket’, ’Start’, ’Suspend’, ’Search’, ’Select’, ’Sizeof’, ’Status’, ’listen’, ’Terminate’, ’Unhook’, ’Uninitialize’, ’Unload’, ’Unmap’, ’Unprotect’, ’Write’, 

’accept’, ’bind’, ’shutdown’ 

70 

Table 2 

An example of conversion from API i to q i . 

API i q i 

action i ob ject i class i category i 

... ... ... ... ... 

GetProcessHeap Get ProcessHeap Select process 

RtlAllocateHeap Allocate RtlHeap Update system 

SetLastError Set LastError Update system 

RegCreateKeyExW Create RegKeyEx Update registry 

RegQueryValueExW Query RegValueEx Select registry 

RegSetValueExW Set RegValueEx Update registry 

RegCloseKey Close RegKey Update registry 

... ... ... ... ... 

c

t

W

c
′
′

t  

q

i

4

a

t

l

F

o  

v  

n

Q

w

t

m

w  

s

m

4

r

d

t

Fig. 4. Model architecture. 

t

m

t

a  

p

w

b

S

H

L

d

4

n

m

e

a

l ass i ∈ { ′ Sel ect ′ , ′ U pdate ′ , ′ Other ′ } (12) 

In addition, CuckooSandbox provides a classification standard 

hat divides APIs into 18 categories which are depicted in Eq. (13) . 

e quote it as the value of category i . 

at egory i ∈ { ′ syst em 

′ , ′ network ′ , ′ process ′ , ′ misc ′ , ′ f ile ′ , ′ registry ′ , 
 serv ice ′ , ′ crypto ′ , ′ resource ′ , ′ ole ′ , ′ exception 

′ , ′ None ′ , ′ netapi ′ , 
 synchronisation 

′ , ′ ui ′ , ′ certi f icate ′ , ′ iexplore ′ , ′ not i f icat ion 

′ } 
(13) 

In summary, each AP I i in the API sequence is re-described as 

he 4-tuple q i (see an example in Table 2 ). Similar to the API se-

uence, these 4-tuples are connected into a tuple sequence which 

s called “semantic chain”. 

.3.2. Feature map representation of semantic chain 

After step-1, we convert each API name to a 4-tuple and form 

 semantic chain. Then we use an embedding layer to transform 

he semantic chain into a matrix. Finally, we apply a convolutional 

ayer to obtain the feature maps of a semantic chain (as shown in 

ig. 3 Step-2). Through the embedding layer, each element ( action i , 

b ject i , class i , and category i ) in q i is turned into a k ′ -dimensional

ector and q i is turned into Q i ∈ R 

4 ×k ′ . A semantic chain of length

 is represented as 

 1: n = Q 1 � Q 2 � · · · � Q n (14) 

ith Q 1: n ∈ R 

4 n ×k ′ . Let W q ∈ R 

4 ×k ′ refer to the convolution filter, 

hen a feature m 

′ 
i 

is generated from Q i by 

 

′ 
i = f ( W q · Q i + b q ) , (15) 

here b q ∈ R is a bias term. This filter is applied to each q i in the

emantic chain to produce a feature map 

 

′ = 

[
m 

′ 
1 , m 

′ 
2 , . . . , m 

′ 
n 

]
. (16) 

.4. Bi-LSTM for relationship information representation 

In this subsection, the Bi-LSTM model is applied to capture the 

elationship between API calls. 

A Bi-LSTM is composed of two LSTMs stacked together but with 

ifferent directional inputs. The unidirectional LSTM is able to cap- 

ure the relationship between the current API with the past APIs 
6 
hrough several gates designed to control the information trans- 

ission status. Compared to unidirectional LSTM, Bi-LSTM can in- 

egrate the relationship information from the past and future states 

t the same time ( Agrawal et al., 2018 ). Thus, the Bi-LSTM is ap-

lied to capture the complex relationship between APIs. 

The sequence X = m � m 

′ = { x 1 , x 2 , x t , . . . } is input to Bi-LSTM, 

here x t = m t � m 

′ 
t is the features in the feature maps obtained 

y the API Phrase and Semantic Chain modules. As described in 

ection 3.2 , Bi-LSTM model calculates the hidden layer output 

 = { h 1 , h 2 , h t , . . . } of two different directional LSTMs. The H of Bi- 

STM is used as the input of the classification module for malware 

etection. 

.5. Model architecture 

Our final model architecture is shown in Fig. 4 . This deep neural 

etwork is designed to judge whether the input API sequence is 

alicious or not. The proposed model contains the intrinsic feature 

ncoder (including API Phrase, Semantic Chain, and Bi-LSTM) and 

n MLP classifier. 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Table 3 

Dataset overview. 

Dataset Malware (Positive) Goodware (Negative) Total 

Jan.–Jun. 2019 (Training Set) 10,433 10,875 21,308 

Jul.–Dec. 2019 (Test Set) 10,454 11,245 21,699 

ToTal 20,887 22,120 43,007 

e

t

a

s  

a  

t

T

b

d

d

p

T

t

a

w

t

L

i

5

s

m

5

5

d

t

s

t

S

s

t

V

v

t

fi

fi

o

g

o

R

p

t

Table 4 

The malware instances of different types. 

Type #Instance 

Spyware 2205 

Backdoor 3213 

Virus 1443 

Downloader 1863 

Ransom 1449 

Adware 1159 

Worm 1244 

Trojan 4965 

Disputed 3346 

Fig. 5. Data collection. 

G

c

v

s

V

c

fi

1

l

t

T

f

5

r

i

s

a

i

r

A

t

d

L

To express rich software behavior, API Phrase module sets an 

mbedding layer and three parallel convolutional layers whose fil- 

er sizes are 3, 4, 5, respectively. 

After semantic chain construction, the Semantic Chain module 

pplies an embedding layer and a convolutional layer with filter 

ize 4 and stride length 4. In this module, each API is turned into

 matrix with the first dimension of 4 ( q ′ 
i 
∈ R 

4 ×k ′ ), so the convolu-

ional layer can process every specific API. 

All outputs from convolution layers are concatenated together. 

hen, the Bi-LSTM module is applied to capture the relationship 

etween APIs. 

After the Bi-LSTM module, an MLP classification module with 

ense layers is used to make a decision. After every dense layer, a 

ropout layer is used to reduce overfitting. In this paper, we ap- 

ly 2 dense and 2 dropout layers as the hidden layer of the MLP. 

hen, the last dense layer with 1 unit applies a Sigmoid activa- 

ion to output the probability of malware estimation. Our model 

pplies Adam as the optimizer and supervises each input sequence 

ith the label. To measure the loss of the training stage, we use 

he binary cross-entropy function in Eq. (17) . 

 = −
( 

n ∑ 

i =1 

y (i ) log ̂  y (i ) + (1 − y (i ) ) log (1 − ˆ y (i ) ) 

) 

(17) 

The detailed model structural configurations will be discussed 

n Section 6.2 . 

. Experimental setup 

In this section, we introduce the dataset and hyperparameter 

ettings used for experiments. We also introduce the evaluation 

etrics and baseline models used for the evaluation. 

.1. Data collection 

.1.1. PE files collection 

We collect Windows PE files in 2019 to create a software 

ataset. The label used for malware samples is “positive”, while 

he one used for goodware is “negative”. 

The malicious PE files is obtained from the VirusShare web- 

ite using a daily downloading script. The benign software is ob- 

ained from popular free software sources including Softonic.com , 

ourceforge.net and Portableapps.com . 

However, the samples from VirusShare or the free software 

ources are not guaranteed to be malicious or benign. To clean 

he fake malware and goodware, each sample is validated with 

irusTotal , where more than 60 antivirus engines are applied to 

ote whether the test sample is malicious or benign. In our dataset, 

he samples with more than 10 malicious votes are chosen as the 

nal malicious samples, and samples with 0 vote are chosen as the 

nal benign samples. The samples with votes between 1 and 9 are 

mitted to prevent contaminating the dataset with false positives. 

The final dataset which contains 20,887 malware and 22,120 

oodware is shown in Table 3 . The malware in dataset consists 

f several types including Spyware, Backdoor, Virus, Downloader, 

ansom, Adware, Worm, and Trojan (as shown in Table 4 ). ”Dis- 

uted” class represents those malware whose type contains mul- 

iple categories and the specific type could not be determined. 
7 
oodware samples consist of almost all application categories in- 

luding System, Internet, Games, Bussiness, Media, Software De- 

elopment Kit, Education, Social, Travel and Tools. The age of our 

amples is between January 2019 and December 2019, based on 

irusTotal first seen time. In order to ensure the temporal training 

onsistency ( Pendlebury et al., 2019 ), we use the samples of the 

rst half of 2019 as the training set, including 10,443 malware and 

0,875 goodware. The 10,454 malware and 11,245 goodware in the 

atter half of 2019 are used as the test set. 

Considering that new malware is being generated over time, 

here could be many PE files for new malware in the test dataset. 

herefore, the experimental results indicate the model’s capability 

or detecting unknown malware to a certain degree. 

.1.2. API sequence collection 

After PE files collection, the CuckooSandbox (2020) is used to 

un the PE files and gather execution logs. It executes each PE file 

nside virtual machines and uses API hooks to monitor the API call 

equence. 

CuckooSandbox (2020) is an open source tool for automating 

nalysis of files. User can upload files to the Cuckoo server. Then, 

n a matter of minutes, Cuckoo executes an uploaded file inside a 

ealistic but isolated environment and employs API hooks to trace 

PI calls of the file. 

Fig. 5 shows the process of extracting the API sequences from 

he uploaded files. We upload the Windows PE samples in our 

ataset to the Cuckoo server that is installed with Ubuntu 16.04 

TS. We apply several virtual machines which are maintained as 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Table 5 

Hyperparameter search space and the best value to tune the model. 

HyperParameter Search Space Best Value 

Units of embedding layer in API Phrase { 8 , 16 , 32 } 16 

Units of embedding layer in Semantic Chain { 8 , 16 , 32 } 8 

Number of filters of convolution layers { 32 , 64 , 128 } 128 

Activation function of convolution layers {relu, sigmoid, tanh} relu 

Units of Bi-LSTM layer {100, 200} 100 

Activation function of Bi-LSTM layers {relu, sigmoid, tanh} sigmoid 

Units of the first dense layer {64, 128} 64 

Units of the second dense layer {32, 64} 32 

Activation function of dense layers {relu, sigmoid, tanh} relu 

Rate of Dropout layers {0.2, 0.5} 0.2 

Learning rate { 10 −4 , 10 −3 , 10 −2 } 10 −3 

c

a

s

T

i

n

(

c

(

c

I

p

t

c

t

t

s  

p

c

r

o  

a  

m

5

m

h

u

t

t

t

w

f

t

d

p

f

a

l  

c

n

d

5

o

a

a

c

w

A

P

R

F

5

m

f

d

s

5

N

S

(

(  

2

p

T

t

5

o

b

t

lients on Cuckoo server. All the virtual clients are installed with 

 Windows 7 64-bit system and several daily-use software to en- 

ure the successful execution of the PE samples in the dataset. 

he snapshot feature of the virtual machine is leveraged to roll 

t back after execution to ensure the uniformity of software run- 

ing environment. Besides, Cuckoo simulates some user actions 

such as clicking a button, typing some texts, etc.) to trigger mali- 

ious behavior of malware. We also adopt some “age” mechanisms 

 Miramirkhani et al., 2017 ) to prevent sandbox evasion. 

After a PE file is uploaded, Cuckoo server begins to call a free 

lient to execute the file and record the API calls automatically. 

n this paper, we set the maximum running time of each sam- 

le to 5 min. That is to say, the sandbox process completes when 

he uploaded sample ends itself or runs to 5 min. When the pro- 

ess completes, Cuckoo server will generate a sandbox report about 

his uploaded file and an API sequence can be extracted from 

his report. Since the length of API sequence formed by distinct 

oftware is different, we use the first 10 0 0 APIs that are not re-

eated continuously as the input sequence to the model. Specifi- 

ally, when the same API is called several times continuously in a 

ow it appears as it was only invoked once. For example, for an 

riginal API sequence { a, a, a , b, c, c , d, a, . . . } , it will be processed

s { a, b, c, d, a, . . . } , whose the first 10 0 0 items will be input to the

odel. 

.2. Hyperparameter settings 

There are many hyperparameters that need to be set in the 

odel. Table 5 shows our hyperparameter search space and the 

yperparameter values for the best classification performance. We 

se a grid search and conduct the 4-fold cross-validation on the 

raining set to select the best hyperparameters. During the model 

raining, we use the EarlyStopping which is ensured that the educa- 

ion is terminated without reaching the extreme fit of the model. 

To conduct the 4-fold cross-validation, the malware and good- 

are training datasets are split into 4 equal-sized subsets. In each 

old of the cross-validation, 3 subsets (75%) of the data are used for 

raining a brand new model, and the rest subset (25% of the data), 

ifferent in each fold, is used to evaluate the resultant model. For a 

articular set of model parameters, when all 4 training-validation 

olds are finished, we compute the final validation loss by aver- 

ging the 4 validation losses over the 4 folds. The final validation 

oss is treated as the score of this model and is further used as the

riterion for comparing with different hyperparameter settings. Fi- 

ally, we choose the best model with the minimum average vali- 

ation loss. 

.3. Evaluation metrics 

The confusion matrix is applied to evaluate the performance 

f our proposed model. We calculate accuracy, precision, recall, 
8 
nd F1-score ( Eqs. (18) –(21) ) to assess our detection performance 

nd make comparisons. The receiver operating characteristic (ROC) 

urve and area under curve (AUC) score are also used to compare 

ith baseline models. 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(18) 

 recision = 

T P 

T P + F P 
(19) 

ecall = 

T P 

T P + F N 

(20) 

 1 − score = 

2 × P recision × Recall 

P recision + Recall 
(21) 

.4. Baselines 

To investigate the performance improvement, the proposed 

odel is compared with several baseline models. All the baselines 

ocus on API-based malware analysis. The baseline models can be 

ivided into two groups: frequency statistics based ML models and 

equence encoding based models. 

.4.1. Frequency statistics based ML models 

Some machine learning models including Naive Bayes (NB), K- 

earest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), 

upport Vector Machine (SVM) and eXtreme Gradient Boosting 

XGBoost) are widely used in frequency statistics based methods 

 Alazab et al., 2011; Fan et al., 2018; Lin et al., 2018; Sami et al.,

010 ). In this paper, we apply these ML models to verify the ex- 

erimental performance of the frequency statistics based methods. 

he frequency of each API calls in each software sample are input 

o these ML models. 

.4.2. Sequence encoding based models 

Several sequence encoding based studies are applied as the sec- 

nd group of our baselines. All these works focus on API sequence 

ased malware detection and try to represent some intrinsic fea- 

ures. The baselines are as follows: 

• Kolosnjaji et al. (2016) : This approach combines convolutional 

neural networks with recurrent neural networks to represent 

software behavior and relationship information. The input is 

one-hot vectors for each API name. 

• Tran and Sato (2017) : They apply paragraph vector to represent 

software behavior and give weights to each API using TF-IDF. 

Then the multiple ML models including SVM, KNN, MLP and RF 

are applied to analyze the processed API sequence. 

• Kim (2018) : They group every API sequence into various n- 

grams to characterize software behavior and weight them with 

TF-IDF. They apply multinomial NB and linear SVM to do mal- 

ware detection. 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Table 6 

Comparisons with the frequency statistics based ML models. 

Method Accuracy Precision Recall F1-score 

Naive Bayes (NB) 0.6428 0.7307 0.4096 0.5249 

K-Nearest Neighbor (KNN) 0.8846 0.8985 0.8576 0.8775 

Decision Tree (DT) 0.9078 0.8921 0.9198 0.9058 

Random Forest (RF) 0.9284 0.8957 0.9636 0.9284 

Support Vector Machine (SVM) 0.9045 0.8895 0.9154 0.9023 

eXtreme Gradient Boosting (XGBoost) 0.9302 0.9118 0.9467 0.9289 

Proposed Model 0.9731 0.9617 0.9835 0.9724 

t

o

o

d

r  

s

t

6

c

a

i

t

t

6

0

d

b

s

e

t

a

m

b

i

b

i

i

r

s

p

t

f

m

t

Fig. 6. ROC curve comparisons with the frequency statistics based ML models. 

A

q

b

e

3

f

i

b

9

a

6

c

f

l

t

m

m

P

c

p

 

c

e

a

t

m

• Agrawal et al. (2018) : They extract one-hot vectors from the API 

call sequence and frequent n-gram vectors from the API argu- 

ments. The detection model consists of several stacked LSTMs. 

• Çatak et al. (2020) : This deep learning method applies an em- 

bedding layer and several LSTM layers to capture the relation- 

ship between APIs. 

• Zhang et al. (2020) : They utilize a feature hashing trick to en- 

code the API name and arguments to represent the semantic 

information of APIs. They also use gated convolutional neural 

networks to transform the features and a Bi-LSTM layer to cap- 

ture the relationship between APIs. 

All the baselines are reimplemented against our dataset with 

he same detection model hyperparameters and settings from the 

riginal papers. Specifically, all the experiments are implemented 

n the API sequences extracted from the Cuckoo reports in our 

ataset. Note that the maximum time we set for the program to 

un is 5 min, which is greater than most of the baselines and en-

ures the more adequate monitoring of software behavior. Thus, 

he comparison experiment is fair relative to the baseline settings. 

. Evaluation 

In this section, we show our experiment results and make a 

omparison between our proposed model and baseline models. We 

lso conduct ablation studies to analyze the contribution of each 

ntrinsic feature to our model. We conduct some other experiments 

o demonstrate the effectiveness of our method to malware detec- 

ion. 

.1. Comparisons with baselines 

The proposed model has an accuracy of 0.9731, a precision of 

.9617, a recall of 0.9835, and an F1-score of 0.9724 on the test 

ataset. Table 6 shows that our proposed method outperforms ML 

aselines significantly, which indicates the feature mining of API 

equence is not sufficient in frequency statistics based ML mod- 

ls. Fig. 6 shows ROC curves of different ML baseline models and 

he proposed model. It should be noted that the model RF as well 

s XGBoost achieve a quite good AUC by using ensemble learning 

ethods. This indicates the importance of multiple features com- 

ination. Thus, we adopt a fusion strategy in multiple API sequence 

ntrinsic features and achieve the AUC score of 0.9929. 

The proposed method is compared with sequence encoding 

ased models in Table 7 . These methods try to use machine learn- 

ng (ML) or deep learning (DL) to represent some intrinsic features 

ncluding software behavior (SB), semantic information (SI), and 

elationship information (RI). By applying deep learning to repre- 

ent and combine more intrinsic features of API sequence, our pro- 

osed model achieves the best performance. It should be notice 

hat Agrawal et al. (2018) and Zhang et al. (2020) design a complex 

eature engineering about the API arguments to represent the se- 

antic information of APIs. In this paper, we use the category, ac- 

ion, and operation object to represent the semantic information of 
9 
PIs instead of their arguments. Our proposed method doesn’t re- 

uire complex feature engineering operations about API arguments 

ut achieve a good performance. 

For time overhead, the proposed model takes about 25s per 

poch in training stage under environment of one NVIDIA RTX 

090. In addition, the average inference time (including the time 

or API sequence processing and model prediction) of each sample 

s less than 100ms. Since the data collection using Cuckoo sand- 

ox is time-consuming, and costs 2–5 min for most samples (over 

0%), the time overhead of our analysis process is relatively small 

nd acceptable. 

.2. Ablation studies 

Our framework mainly handles 3 kinds of intrinsic features in- 

luding software behavior (by API Phrase module), semantic in- 

ormation of each API (by Semantic Chain module), and the re- 

ationship between APIs (by Bi-LSTM module). In order to assess 

he contribution of each intrinsic feature, we remove each feature 

odule from the model architecture and then evaluate the perfor- 

ance of the remaining model. Additionally, the structure of API 

hrase module and Bi-LSTM module can be flexibly adjusted. We 

hange the lengths of API phrases or the direction of LSTM to ex- 

lore the performance with different model configurations. 

As shown in Table 8 , the lack of any part of the model will

ause performance degradation. Fig. 7 shows ROC curves of differ- 

nt parts of the proposed model, and the AUC score will decrease 

fter the removal of any module. That is to say, each intrinsic fea- 

ure has a good effect on malware detection, which enables the 

odel adapt to complex detection environments. It is worth not- 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Table 7 

Comparisons with sequence encoding based models. 

Study Method Accuracy Precision Recall F1-score Intrinsic Features 

SB SI RI 

Kolosnjaji et al. (2016) DL 0.9137 0.8895 0.9543 0.9208 
√ 

- 
√ 

Tran and Sato (2017) ML 0.9531 0.9495 0.9620 0.9557 
√ 

- - 

Kim (2018) ML 0.9373 0.9523 0.9272 0.9400 
√ 

- - 

Agrawal et al. (2018) DL 0.9581 0.9459 0.9683 0.9570 - 
√ √ 

Çatak et al. (2020) DL 0.9552 0.9476 0.9682 0.9578 - - 
√ 

Zhang et al. (2020) DL 0.9674 0.9591 0.9799 0.9693 - 
√ √ 

Proposed Model DL 0.9731 0.9617 0.9835 0.9724 
√ √ √ 

Table 8 

The ablation experimental results. 

Method Accuracy Precision Recall F1-score 

Without API Phrase module 0.9399 0.9247 0.9527 0.9385 

Without Semantic Chain module 0.9503 0.9312 0.9683 0.9494 

Without Bi-LSTM module 0.9581 0.9394 0.9760 0.9574 

Proposed Model 0.9731 0.9617 0.9835 0.9724 

Fig. 7. ROC curve comparisons with different parts of the proposed model. 

i

a  

f

m

i

A

fi

A

p

e

t

6

a

s

d

F

t

t  

l  

l  

t  

i  

n  

l

t

a

6

t

p

t

B

t

w

o

c

f

r

p

6

l

h

i

a

t

t

t

H

e

l

a

a

6

t

t

t

ng that the model without API Phrase has the worst performance, 

s the accuracy of the model reduces by 4% on the test set. There-

ore, the API Phrase module has a greater impact on the proposed 

odel. Moreover, the Semantic Chain module and Bi-LSTM module 

mprove the F1-score by 2% - 3%. This indicates the importance of 

PI semantic information and relationship extraction. 

In order to explore the performance with different model con- 

gurations, we fix other structures and only change the lengths of 

PI phrases or the direction of the LSTM. We also evaluate the im- 

act of different MLP structures on detection performance. These 

xperimental results serve as the basis for determining the struc- 

ure of our final model. 

.2.1. Lengths of API phrases 

For the proposed model, three parallel convolutional layers are 

pplied to represent API phrases of length 3, 4, and 5. We fix other 

tructures and only change the lengths of API phrases by using 

ifferent number of convolutional layers with different filter size. 

ig. 8 depicts the comparison across different numbers of convolu- 

ional layers. We conduct three sets of experiments: two convolu- 
10 
ion layers with filter size h of 3 and 4 ( h = 3 , 4 ), three convolution

ayers with filter size h of 3, 4, and 5 ( h = 3 , 4 , 5 ), and four convo-

ution layers with filter size h of 3, 4, 5, and 6 ( h = 3 , 4 , 5 , 6 ). Al-

hough the recall of h = 3 , 4 , 5 is similar to h = 3 , 4 , the other three

ndicators of h = 3 , 4 , 5 are improved. In addition, increasing the

umber of convolution layer from h = 3 , 4 , 5 to h = 3 , 4 , 5 , 6 bring

ower performance in accuracy and F1-score. Therefore, the struc- 

ure of three convolution layers with filter size 3, 4 and 5 is finally 

pplied in our model. 

.2.2. Direction of LSTM 

The Bi-LSTM layer is applied to represents the relationship be- 

ween APIs in the proposed model. In order to understand the im- 

act of Bi-LSTM layer, we change or delete this layer and conduct 

hree sets of experiments: without LSTM, undirectional LSTM, and 

i-LSTM. As shown in Fig. 9 , the model with Bi-LSTM or undirec- 

ional LSTM converges faster and get better performance compared 

ith the model without LSTM. This confirms that the performance 

f detector can be improved by using the relationship between API 

alls. Futhermore, the model with Bi-LSTM achieves the best per- 

ormance, specially in accuracy and F1-score, which indicates the 

icher relationship information between API calls is helpful to im- 

rove the performance of the model. 

.2.3. Structure of MLP 

The MLP classification module with dense layers and dropout 

ayers is used to make a decision. We change the structure of MLP 

idden layers (i.e., the number of Dense+Dropout layers) to explore 

ts impact on the detection performance. As shown in Fig. 10 , there 

re three sets of experiments: MLP with one Dense+Dropout layer, 

wo Dense+Dropout layers, and three Dense+Dropout layers. These 

hree sets of experiments have little difference in the final de- 

ection results. They all achieve about 97% accuracy and F1-score. 

owever, the model with MLP of two Dense+Dropout hidden lay- 

rs converges faster. In addition, increasing the number of hidden 

ayers from 2 Dense+Dropout to 3 Dense+Dropout does not bring 

ny performance improvement. Thus, we choose 2 Dense+Dropout 

s the hidden layers of MLP in our proposed model. 

.3. Impact of proposed model 

To understand the source of the performance gain, we examine 

he impact of our proposed model. As shown in Fig. 11 , according 

o our proposed model, the input API sequence first passes through 

he embedding layer, then carries out intrinsic feature encoding, 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Fig. 8. Comparisons of Accuracy, Precision, Recall, and F1-score of API phrases of different lengths. 

Fig. 9. Comparisons of Accuracy, Precision, Recall, and F1-score of the LSTM with different structures. 

a

s

A

f

t

2

t

s

a

p

1  

t

s

c

t

L

p

6

nd finally passes through the MLP classifier. We define the feature 

pace after the embedding layer (i.e., the embedding layer in the 

PI Phrase module) as the original space. We also define two latent 

eature spaces: (1) Latent Space 1 that contains the features after 

he intrinsic feature encoder and before the MLP. (2) Latent Space 

 that contains the features after MLP’s hidden layers and before 

he output layer. We present a visualization in Figs. 12 –14 , which 

hows the t-SNE plot of the test samples. T-SNE ( Van der Maaten 

nd Hinton, 2008 ) performs non-linear dimensionality reduction to 

roject data samples into a 2-d plot. Compared with Figs. 12 and 

3 , we can observe that the samples in Latent Space 1 have formed
 d

11 
ighter clusters, making it easier to distinguish between benign 

oftware and malware. This indicates the intrinsic feature encoder 

aptures the meaningful features of malware. As shown in Fig. 14 , 

he boundary between malicious and benign clusters is clearer in 

atent Space 2 , which demonstrates the effectiveness of our pro- 

osed method for malware detection. 

.4. Longer term malware detection 

To verify the effectiveness of our model in long-term malware 

etection, we widen the time window and establish two new test 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Fig. 10. Comparisons of Accuracy, Precision, Recall, and F1-score of the MLP with different layers. 

Fig. 11. Feature space definition. 

Algorithm 1 GET ACTION AND OBJECT. 

Input: API Name String AP I i , Action Dictionary AD 

Output: action i , ob ject i 

1: action i ← NULL ; 

2: ob ject i ← NULL ; 

3: ch ← Get Last C haract er(AP I i ) ; // return the last character 
of AP I i . 

4: if ch = 

′ W 

′ or ch = 

′ A 

′ then 

5: AP I i ← Remov eLastC haract er(AP I i ) ; // return the string 
left after removing the last character from AP I i . 

6: end if 

7: for each word ac ∈ AD do 

8: if ac in AP I i then 

9: action i ← ac; 

10: ob ject i ← AP I i .Remov eString(ac) ; // return the string 
left after removing the string ac from AP I i . 

11: break; 

12: end if 

13: end for 

s

2

w

t  

m

w

p

A

t

D

J

c

d

t

7

f

7

e

r

F

o

a

T

c

ets: (1) The 9211 malware and 10,074 goodware in the first half of 

020 (i.e., Jan.-Jun. 2020 ). (2) The 9631 malware and 12,213 good- 

are in the latter half of 2020 (i.e., Jul.-Dec. 2020 ). The experimen- 

al results are shown in Table 9 . We notice that the F1-score of our
12 
odel is greater than 90% on all three test sets that contain mal- 

are from July 2019 to December 2020, which indicates our pro- 

osed method has long-term effectiveness in detecting malware. 

nother interesting finding is that the performance of the detec- 

ion model is gradually decreased over time. Compared with Jul.–

ec. 2019 , the F1-score of the model decreases by about 2% on 

an.–Jun. 2020 , and about 6% on Jul.–Dec. 2020 . This is mainly be- 

ause software tends to evolve over time, resulting in changes in 

ata distribution (i.e., concept drift), which is beyond the scope of 

his paper. 

. Limitations and future work 

In this section, we further discuss the limitations as well as our 

uture work. 

.1. Other file types and operating systems 

In this paper, we have only targeted Windows 7. We plan to 

xplore the performance of our proposed methods on other newly 

eleased versions of Windows (i.e., Windows 8 and Windows 10). 

urthermore, we plan to test the performance of our methods on 

ther API-based operating systems such as Android platforms. In 

ddition, all experiments are conducted using the Cuckoo sandbox. 

herefore, this paper is limited to the list of Cuckoo’s hooked API 

alls CuckooAPI (2015) . In the future, we plan to design a run-time 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Table 9 

Longer term malware detection results. 

Test Set Malware Goodware Accuracy Precision Recall F1-score 

Jul.–Dec. 2019 10,454 11,245 0.9731 0.9617 0.9835 0.9724 

Jan.–Jun. 2020 9211 10,074 0.9519 0.9433 0.9666 0.9548 

Jul.–Dec. 2020 9631 12,213 0.9108 0.9017 0.9318 0.9165 

Fig. 12. T-SNE plot in the original space. 

Fig. 13. T-SNE plot in the latent space 1. 

m

s

7

m

(  

Fig. 14. T-SNE plot in the latent space 2. 

s

m

7

t

q

e

h

o

8

b

c

t

w

e

i

f

d

m

t

l

t

d

s

i

m

t

alware analysis and detection tool that can extract the API calls 

imultaneously while the program is running. 

.2. Robustness to adversarial attacks 

Recent studies have shown that many API sequence based 

alware detection methods are vulnerable to adversarial attacks 

 Rosenberg et al., 2020; 2018 ). Hence, in the future, we plan to use
13 
ome methods like sequence squeezing ( Rosenberg et al., 2019 ) to 

ake our solution more robust against the adversarial attacks. 

.3. The problem of concept drift 

Concept drift is the problem of the changing underlying rela- 

ionships in the data. This will result in the decay of the prediction 

uality of malware detectors and classifiers over time as malware 

volves and new variants appear ( Pendlebury et al., 2019 ), which 

as been reflected in Section 6.4 . In the future, we plan to modify 

ur method and build a sustainable model for malware detection. 

. Conclusion 

In this paper, we propose a novel malware detection framework 

ased on API sequence intrinsic features. An intrinsic feature en- 

oder consists of 3 modules is designed to represent and combine 

he intrinsic features of API sequence. The API Phrase module can 

ell depict the actual software behaviors. Semantic Chain module 

xpresses semantic information of the API calls. Bi-LSTM module 

s applied to capture the relationship between APIs. Based on the 

eature encoder, a deep neural network model is implemented to 

etect whether the software is malicious or not. We evaluate the 

odel with a large real software dataset. The experiments show 

hat our solution performs better than all the baselines. The ab- 

ation studies over multiple architectural changes prove the effec- 

iveness of our intrinsic features and validates our model design 

ecisions. Our proposed framework has a good performance in API 

equence analysis and malware detection. Since all the samples 

n the training are temporally precedent to the testing ones, our 

odel has a good ability for detecting unknown malware to a cer- 

ain degree. 



C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

D

c

i

C

W

v

d

A

m

a

R

A

A

 

A  

A

Ç

C

C

C

D

D

D

E  

F  

G

H  

H
K

K  

K

K  

K

K

L

L

L  

L  

V  

M

M

N  

P

P  

P

P

Q

R

R

R

R

S

S

S
S

S

T

T

V

V
V

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Ce Li: Conceptualization, Methodology, Software. Qiujian Lv: 

riting – original draft, Visualization. Ning Li: Data curation, In- 

estigation. Yan Wang: Supervision. Degang Sun: Resources, Vali- 

ation. Yuanyuan Qiao: Writing – review & editing. 

cknowledgments 

This research has been partially funded by the Institute of Infor- 

ation Engineering, Chinese Academy of Science, Project E0H0041, 

nd is supported by the University of Chinese Academy of Science. 

eferences 

grawal, R., Stokes, J.W., Marinescu, M., Selvaraj, K., 2018. Neural sequential malware 
detection with parameters. In: Proceedings of the IEEE International Conference 

on Acoustics, Speech and Signal Processing, ICASSP. IEEE, pp. 2656–2660. doi: 10. 
1109/ICASSP.2018.8461583 . 

hmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., Giacinto, G., 2016. Novel feature 
extraction, selection and fusion for effective malware family classification. In: 

Proceedings of the Sixth ACM on Conference on Data and Application Security 
and Privacy, CODASPY 2016, New Orleans, LA , USA . ACM, pp. 183–194. doi: 10.

1145/2857705.2857713 . 

lazab, M. , Venkatraman, S. , Watters, P.A. , Alazab, M. , 2011. Zero-day malware de-
tection based on supervised learning algorithms of API call signatures. In: Pro- 

ceedings of the Ninth Australasian Data Mining Conference, AusDM 2011, Bal- 
larat, Australia. Australian Computer Society, pp. 171–182 . 

mer, E., Zelinka, I., 2020. A dynamic windows malware detection and prediction 
method based on contextual understanding of API call sequence. Comput. Secur. 

92, 101760. doi: 10.1016/j.cose.2020.101760 . 

atak, F.Ö., Yazi, A.F., Elezaj, O., Ahmed, J., 2020. Deep learning based sequential 
model for malware analysis using windows exe API calls. PeerJ Comput. Sci. 6, 

e285. doi: 10.7717/peerj-cs.285 . 
hristodorescu, M. , Jha, S. , 2003. Static analysis of executables to detect malicious 

patterns. In: Proceedings of the 12th USENIX Security Symposium, Washington, 
D.C., USA. USENIX Association . 

uckooAPI . Hooked APIs and categories in cuckoo . https://github.com/ 

cuckoosandbox/cuckoo/wiki/Hooked- APIs- and- Categories . 
uckooSandbox. Cuckoo sandbox automated malware analysis. https:// 

cuckoosandbox.org/ . 
amodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.H., Stamp, M., 2017. A comparison 

of static, dynamic, and hybrid analysis for malware detection. J. Comput. Virol. 
Hacking Tech. 13 (1), 1–12. doi: 10.1007/s11416-015-0261-z . 

avid, O.E., Netanyahu, N.S., 2015. Deepsign: deep learning for automatic malware 

signature generation and classification. In: Proceedings of the International Joint 
Conference on Neural Networks, IJCNN. IEEE, pp. 1–8. doi: 10.1109/IJCNN.2015. 

7280815 . 
ing, Y., Zhu, S., 2019. Malware detection based on deep learning algorithm. Neural 

Comput. Appl. 31 (2), 461–472. doi: 10.10 07/s0 0521- 017- 3077- 6 . 
lhadi, A .A .E., Maarof, M.A ., Barry, B.I.A ., Hentabli, H., 2014. Enhancing the detection

of metamorphic malware using call graphs. Comput. Secur. 46, 62–78. doi: 10. 

1016/j.cose.2014.07.004 . 
an, M., Liu, J., Luo, X., Chen, K., Tian, Z., Zheng, Q., Liu, T., 2018. Android malware

familial classification and representative sample selection via frequent subgraph 
analysis. IEEE Trans. Inf. Forensics Secur. 13 (8), 1890–1905. doi: 10.1109/TIFS. 

2018.2806891 . 
alal, H.S., Mahdy, Y.B., Atiea, M.A., 2016. Behavior-based features model for mal- 

ware detection. J. Comput. Virol. Hacking Tech. 12 (2), 59–67. doi: 10.1007/ 

s11416- 015- 0244- 0 . 
an, W., Xue, J., Wang, Y., Huang, L., Kong, Z., Mao, L., 2019. Maldae: detecting and

explaining malware based on correlation and fusion of static and dynamic char- 
acteristics. Comput. Secur. 83, 208–233. doi: 10.1016/j.cose.2019.02.007 . 

art, J.M. , 1997. Win32 Systems Programming. Win32 Systems Programming . 
etkar, N. , Santana, E. , 2017. Deep Learning with Python, 1. Springer . 

i, Y., Kim, E., Kim, H.K., 2015. A novel approach to detect malware based on API
call sequence analysis. Int. J. Distrib. Sens. Netw. 11, 659101:1–659101:9. doi: 10. 

1155/2015/659101 . 

im, C.W., 2018. Ntmaldetect: a machine learning approach to malware detection 
using native API system calls. CoRRabs/1802.05412. 

im, H., Kim, J., Kim, J., Kim, I., Chung, T., 2016. Feature-chain based malware detec-
tion using multiple sequence alignment of API call. IEICE Trans. Inf. Syst. 99-D 

(4), 1071–1080. doi: 10.1587/transinf.2015CYP0 0 07 . 
14 
im, Y., 2014. Convolutional neural networks for sentence classification. In: Proceed- 
ings of the Conference on Empirical Methods in Natural Language Processing, 

EMNLP. ACL, pp. 1746–1751. doi: 10.3115/v1/d14-1181 . 
olosnjaji, B., Zarras, A., Webster, G.D., Eckert, C., 2016. Deep learning for classifica- 

tion of malware system call sequences. In: Proceedings of the AI 2016: Advances 
in Artificial Intelligence - 29th Australasian Joint Conference, Hobart, TAS, Aus- 

tralia. Springer, pp. 137–149. doi: 10.1007/978- 3- 319- 50127- 7 _ 11 . 
i, B., Roundy, K.A., Gates, C.S., Vorobeychik, Y., 2017. Large-scale identification 

of malicious singleton files. In: Proceedings of the Seventh ACM Conference 

on Data and Application Security and Privacy, CODASPY. ACM, pp. 227–238. 
doi: 10.1145/3029806.3029815 . 

in, Y., Lai, Y., Lu, C., Hsu, P., Lee, C., 2015. Three-phase behavior-based detection 
and classification of known and unknown malware. Secur. Commun. Netw. 8 

(11), 2004–2015. doi: 10.1002/sec.1148 . 
in, Z., Xiao, F., Sun, Y., Ma, Y., Xing, C., Huang, J., 2018. A secure encryption-

based malware detection system. KSII Trans. Internet Inf. Syst. 12 (4), 1799–

1818. doi: 10.3837/tiis.2018.04.022 . 
iu, W. , Ren, P. , Liu, K. , Duan, H.-x. , 2011. Behavior-based malware analysis and de-

tection. In: Proceedings of the First International Workshop on Complexity and 
Data Mining. IEEE, pp. 39–42 . 

an der Maaten, L. , Hinton, G. , 2008. Visualizing data using t-sne. J. Mach. Learn.
Res 9 (11) . 

iramirkhani, N., Appini, M.P., Nikiforakis, N., Polychronakis, M., 2017. Spotless 

sandboxes: Evading malware analysis systems using wear-and-tear artifacts. In: 
IEEE Symposium on Security and Privacy, San Jose, CA, USA. IEEE Computer So- 

ciety, pp. 1009–1024. doi: 10.1109/SP.2017.42 . 
ylonas, A., Gritzalis, D., 2012. Practical malware analysis: the hands-on guide to 

dissecting malicious software. Comput. Secur. 31 (6), 802–803. doi: 10.1016/j. 
cose.2012.05.004 . 

air, V.P. , Jain, H. , Golecha, Y.K. , Gaur, M.S. , Laxmi, V. , 2010. Medusa: metamorphic

malware dynamic analysis using signature from API. In: Proceedings of the In- 
ternational Conference on Security of Information & Networks . 

ascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A., 2015. Malware 
classification with recurrent networks. In: Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing, ICASSP. IEEE, pp. 1916–
1920. doi: 10.1109/ICASSP.2015.7178304 . 

endlebury, F. , Pierazzi, F. , Jordaney, R. , Kinder, J. , Cavallaro, L. , 2019. TESSERACT:

eliminating experimental bias in malware classification across space and time. 
In: Proceedings of the 28th USENIX Security Symposium, Santa Clara, CA, USA. 

USENIX Association, pp. 729–746 . 
ichotta, K. , Mooney, R.J. , 2016. Learning statistical scripts with LSTM recurrent neu- 

ral networks. In: Proceedings of the Thirtieth AAAI Conference on Artificial In- 
telligence, Phoenix, Arizona, USA. AAAI Press, pp. 2800–2806 . 

ortableapps.com, URL https://portableapps.com/ . 

iao, Y., Yang, Y., Ji, L., He, J., 2013. Analyzing malware by abstracting the 
frequent itemsets in API call sequences. In: Proceedings of the 12th IEEE 

International Conference on Trust, Security and Privacy in Computing and 
Communications (TrustCom). IEEE Computer Society, pp. 265–270. doi: 10.1109/ 

TrustCom.2013.36 . 
aff, E., Nicholas, C., 2020. A survey of machine learning methods and challenges 

for windows malware classification. CoRRabs/2006.09271. 
osenberg, I., Shabtai, A., Elovici, Y., Rokach, L., 2019. Defense methods against ad- 

versarial examples for recurrent neural networks. CoRRabs/1901.09963. 

osenberg, I., Shabtai, A., Elovici, Y., Rokach, L., 2020. Query-efficient black-box at- 
tack against sequence-based malware classifiers. In: Proceedings of the ACSAC 

’20: Annual Computer Security Applications Conference, Virtual Event / Austin, 
TX, USA. ACM, pp. 611–626. doi: 10.1145/3427228.3427230 . 

osenberg, I., Shabtai, A., Rokach, L., Elovici, Y., 2018. Generic black-box end-to- 
end attack against state of the art API call based malware classifiers. In: Pro- 

ceedings of the Research in Attacks, Intrusions, and Defenses - 21st Interna- 

tional Symposium, RAID 2018, Heraklion, Crete, Greece. Springer, pp. 490–510. 
doi: 10.1007/978- 3- 030- 00470- 5 _ 23 . 

alehi, Z., Sami, A., Ghiasi, M., 2017. MAAR: robust features to detect malicious ac- 
tivity based on API calls, their arguments and return values. Eng. Appl. Artif. 

Intell. 59, 93–102. doi: 10.1016/j.engappai.2016.12.016 . 
ami, A., Yadegari, B., Rahimi, H., Peiravian, N., Hashemi, S., Hamzeh, A., 2010. Mal- 

ware detection based on mining API calls. In: Proceedings of the ACM Sym- 

posium on Applied Computing (SAC), Sierre, Switzerland. ACM, pp. 1020–1025. 
doi: 10.1145/1774088.1774303 . 

oftonic.com, URL https://en.softonic.com/ . 
ourceforge.net, URL https://sourceforge.net/ . 

taudemeyer, R. C., Morris, E. R., 2019. Understanding LSTM - a tutorial into long 
short-term memory recurrent neural networks. CoRRabs/1909.09586. 

ian, R., Islam, M.R., Batten, L.M., Versteeg, S., 2010. Differentiating malware from 

cleanware using behavioural analysis. In: Proceedings of the 5th International 
Conference on Malicious and Unwanted Software, MALWARE, Nancy, France. 

IEEE Computer Society, pp. 23–30. doi: 10.1109/MALWARE.2010.5665796 . 
ran, T.K. , Sato, H. , 2017. Nlp-based approaches for malware classification from API 

sequences. In: Proceedings of the 21st Asia Pacific Symposium on Intelligent 
and Evolutionary Systems (IES) . 

asan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q., 2020. Image-based malware 

classification using ensemble of CNN architectures (IMCEC). Comput. Secur. 92, 
101748. doi: 10.1016/j.cose.2020.101748 . 

irusShare. Virusshare dataset, URL https://virusshare.com/ . 
irusTotal. Virustotal scanner, URL https://www.virustotal.com/ . 

https://doi.org/10.1109/ICASSP.2018.8461583
https://doi.org/10.1145/2857705.2857713
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0003
https://doi.org/10.1016/j.cose.2020.101760
https://doi.org/10.7717/peerj-cs.285
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0007a
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0007a
https://github.com/cuckoosandbox/cuckoo/wiki/Hooked-APIs-and-Categories
https://cuckoosandbox.org/
https://doi.org/10.1007/s11416-015-0261-z
https://doi.org/10.1109/IJCNN.2015.7280815
https://doi.org/10.1007/s00521-017-3077-6
https://doi.org/10.1016/j.cose.2014.07.004
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1007/s11416-015-0244-0
https://doi.org/10.1016/j.cose.2019.02.007
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0016
https://doi.org/10.1155/2015/659101
https://doi.org/10.1587/transinf.2015CYP0007
https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1145/3029806.3029815
https://doi.org/10.1002/sec.1148
https://doi.org/10.3837/tiis.2018.04.022
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0026
https://doi.org/10.1109/SP.2017.42
https://doi.org/10.1016/j.cose.2012.05.004
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0029
https://doi.org/10.1109/ICASSP.2015.7178304
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0032
https://portableapps.com/
https://doi.org/10.1109/TrustCom.2013.36
https://doi.org/10.1145/3427228.3427230
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.1016/j.engappai.2016.12.016
https://doi.org/10.1145/1774088.1774303
https://en.softonic.com/
https://sourceforge.net/
https://doi.org/10.1109/MALWARE.2010.5665796
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0046
https://doi.org/10.1016/j.cose.2020.101748
https://virusshare.com/
https://www.virustotal.com/


C. Li, Q. Lv, N. Li et al. Computers & Security 116 (2022) 102686 

Y

Z  

Z  

C  

p

A
m

Q
f

o
i

t

N
n

i
c

a

Y

C
n

t

D
n  

S

e
s

Y
a

B
s

m

ou, I., Yim, K., 2010. Malware obfuscation techniques: a brief survey. In: Proceed- 
ings of the Fifth International Conference on Broadband and Wireless Comput- 

ing, Communication and Applications, BWCCA. IEEE Computer Society, pp. 297–
300. doi: 10.1109/BWCCA.2010.85 . 

hang, Y. , Wallace, B.C. , 2017. A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification. In: Proceedings 

of the Eighth International Joint Conference on Natural Language Processing, 
IJCNLP 2017, Taipei, Taiwan. Asian Federation of Natural Language Processing, 

pp. 253–263 . 

hang, Z. , Qi, P. , Wang, W. , 2020. Dynamic malware analysis with feature engineer-
ing and feature learning. In: Proceedings of the Thirty-Fourth AAAI Conference 

on Artificial Intelligence, New York, NY, USA. AAAI Press, pp. 1210–1217 . 

e Li received bachelor from Ocean University of China, in 2019. He is presently

ursuing the Ph.D. degree at School of Cyber Security, University of Chinese 

cademy of Sciences. His current research interests include mlaware detection and 
achine learning. 

iujian Lv received Ph.D. degree from information and communication engineering 
rom the School of Information and Communication Engineering, Beijing University 

f Posts and Telecommunications. She is now an associate senior engineer in the 
nstitute of information engineering, Chinese Academy of Sciences. Her research in- 

erests include anomaly detection and data mining. 
15 
ing Li received master’s degree from Beijing University of Posts and Telecommu- 
ications, Beijing, China. He is now an associate senior engineer in the institute of 

nformation engineering, Chinese Academy of Sciences. His research interests in- 
lude anomaly detection, user behavior analysis, and network security operation 

nd maintenance technology. 

an Wang received master’s degree from Beijing University Of Technology, Beijing, 

hina. She is now an associate senior engineer in the institute of information engi- 
eering, Chinese Academy of Sciences. Her research interests include anomaly de- 

ection and network security situational awareness. 

egang Sun is a research professor, PhD supervisor of Institute of Information Engi- 
eering, Chinese Academy of Sciences. He is also a professor in the School of Cyber

ecurity, University of Chinese Academy of Sciences. His research interests include 

lectromagnetic leakage protection, wireless communication technology and high 
ecurity level information system protection technology. 

uanyuan Qiao received the BE degree from Xidian University in 2009. She is an 
ssistant professor in the School of Information and Communication Engineering, 

UPT. Her research focuses on broadband IP network, traffic measurement and clas- 
ification, mobile Internet traffic analysis and cloud computing optimization and 

anagement. 

https://doi.org/10.1109/BWCCA.2010.85
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0051
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0051
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0051
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00084-0/sbref0052

	A novel deep framework for dynamic malware detection based on API sequence intrinsic features
	1 Introduction
	2 Related work
	2.1 API based malware detection methods
	2.1.1 Frequency statistics based methods
	2.1.2 Sequence encoding based methods

	2.2 Intrinsic feature representation of API sequence
	2.2.1 Software behavior
	2.2.2 Semantic information
	2.2.3 Relationship between API calls

	2.3 Deep learning-based approaches

	3 Preliminaries
	3.1 1D CNN
	3.2 LSTM

	4 Proposed method
	4.1 System overview
	4.2 API Phrase for software behavior representation
	4.2.1 API embedding
	4.2.2 Multi-layer convolution

	4.3 Semantic chain for semantic information representation
	4.3.1 Semantic chain construction
	4.3.2 Feature map representation of semantic chain

	4.4 Bi-LSTM for relationship information representation
	4.5 Model architecture

	5 Experimental setup
	5.1 Data collection
	5.1.1 PE files collection
	5.1.2 API sequence collection

	5.2 Hyperparameter settings
	5.3 Evaluation metrics
	5.4 Baselines
	5.4.1 Frequency statistics based ML models
	5.4.2 Sequence encoding based models


	6 Evaluation
	6.1 Comparisons with baselines
	6.2 Ablation studies
	6.2.1 Lengths of API phrases
	6.2.2 Direction of LSTM
	6.2.3 Structure of MLP

	6.3 Impact of proposed model
	6.4 Longer term malware detection

	7 Limitations and future work
	7.1 Other file types and operating systems
	7.2 Robustness to adversarial attacks
	7.3 The problem of concept drift

	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References


