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Abstract—With the emergence of smartphones and location-
based services, user mobility prediction has become a critical
enabler for a wide range of applications, like location-based ad-
vertising, early warning systems, and citywide traffic planning. A
number of techniques have been proposed to either conduct spatio-
temporal mobility prediction or forecast the next-place. However,
both produce diverse prediction performance for different users
and display poor performance for some users. This paper focuses
on investigating the effect of living habits on the models of spatio-
temporal prediction and next-place prediction, and selects one
from these two models for an individual to achieve effective mo-
bility prediction at users’ points of interest. Based on the hidden
Markov model (HMM), a spatio-temporal predictor and a next-
place predictor are proposed. Living habits are analyzed in terms
of entropy, upon which users are clustered into distinct groups.
With large-scale factual mobile data captured from a big city, we
compare the proposed HMM-based predictors with existing state-
of-the-art predictors and apply them to different user groups. The
results demonstrate the robust performance of the two proposed
mobility predictors, which outperform the state of the art for var-
ious user groups.

Index Terms—Big data, cellular data network, hidden Markov
model (HMM), next-place prediction, spatio-temporal mobility
prediction.

I. INTRODUCTION

W ITH the wide deployment of 3G/4G cellular data net-
works, we have witnessed the tremendous growth of

mobile Internet access worldwide. Users access the Internet
anywhere with smart mobile devices via cellular data net-
works to check emails, browse the Web, chat online, and per-
form various mobile applications. Meanwhile, there is a great
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potential for service and network providers to capture big
and invaluable data [1], [2], particularly those related to user
mobility.

Recently, the location information extracted from cellular
data networks has been found extremely significant to study
human dynamics [3]–[6]. As compared with other popular lo-
cation recording methods, like global positioning system (GPS)
or call detail records (CDRs), passively collecting location in-
formation as users access cellular data networks incurs low
energy consumption, covers a wide range and a large number of
individuals, and yields fine time granularity [7]. Users are be-
coming more reluctant to share locations by using GPS, because
continuously collecting GPS data may drain mobile devices’ en-
ergy quickly or make people uncomfortable with respect to the
privacy issue [7]. To collect locations, a limited pool of volun-
teers with similar living habits is selected [8], [9]. In addition,
GPS signals may easily become unavailable in indoors or un-
derground environments, and some noisy points are recorded.
As for CDRs, they record the identities of the connecting cell
towers when mobile devices initiate or receive a call or text
message. Yet, they are sparse in time and coarse in space. These
disadvantages of GPS and CDRs limit the scope of their ap-
plications to study human mobility of a citywide population.
Investigating user mobility with large-scale users in a big city
enables advanced human-centered mobile applications and em-
powers a smart city to engage with its citizens more effectively
and actively.

Existing literature focuses on two kinds of prediction models:
spatio-temporal prediction [8], [10] and next-place prediction
[11]. The first one predicts where the user would be at a given
time in the future. The other model aims at predicting where a
user would visit after leaving the current place. Different indi-
viduals display different prediction performances [10], [12] in
employing either model. For some users, one prediction model
may perform poorly. So, when the model is applied to a prac-
tical application scenario, these users receive inevitably many
recommendations of uninterested places. Thus, we propose to
incorporate the effect of users’ living habits to enhance the
performance of these two models and flexibly implement mo-
bility predictors between the two prediction models for different
individuals.

Moreover, it is very challenging to carry out user mobility pre-
diction from a large amount of location information collected
from cellular data networks. First, user locations represented by
base station (BS) IDs are passively collected as users access mo-
bile Internet. These collected locations exhibit the phenomenon
of oscillation [13], which mixes users’ static and mobile states.
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In addition, among these locations, some are visited less often
or only sporadically while others are points of interest (POI).
These POIs are associated with the semantics of human’s la-
tent states, such as home or workplace. Modeling user mobility
at POIs can not only improve understanding of general human
movement patterns but also support location-based services for
practical applications.

To tackle the above challenges, this paper presents an in-depth
investigation on the performance of the next-place prediction
model and the spatio-temporal prediction model on individuals
on a large scale with different living habits. To begin, we clus-
ter adjacent locations to reduce oscillation and identify POIs.
Then, we group users based on users’ living habits, which are
quantified by the randomness of user mobility during different
time periods with entropy profiles. In terms of the Markovian
property of POI transitions [14], efficient mobility predictors
are designed for both next-place prediction and spatio-temporal
prediction by leveraging the hidden Markov model (HMM).
The performance of predictors on different user groups also in-
dicates that applying different prediction models to users with
distinct living habits can achieve better user mobility modeling.
Overall, the contributions of this paper can be summarized as
follows.

1) We apply the “Leader–Follower algorithm” to cluster lo-
cations collected from a cellular data network that helps to
minimize the oscillation and identify POIs. In this method,
sorting BSs by the number of days that BSs are accessed
helps enhance the POI identification. The method has been
applied successfully on a large amount of real data and
is shown to be effective in analyzing user trajectories ex-
tracted from a cellular data networks.

2) We conduct both spatio-temporal mobility prediction and
next-place prediction by leveraging HMM. As compared
with the existing predictors of NextPlace [10] and the
order-2 Markov model [14], our proposed predictors show
higher efficiency and can potentially be incorporated into
smart life, like preheating the home in anticipation of the
owner’s arrival or adjusting traffic routes in case of a traffic
jam.

3) With available data on a large number of users through-
out a city, we study the effectiveness of the two predic-
tion models on different user groups. Given the living
habit of a user, a proper predictor from the perspective
of spatio-temporal prediction or next-place prediction can
be selected to achieve a better user mobility modeling.
Particularly, for individuals leading highly mobile lives,
next-place prediction shows a significant advantage over
spatio-temporal mobility prediction. For the user who
lives an orderly life and has a short trace, spatio-temporal
prediction performs better.

The rest of the paper is organized as follows. Related works
are reviewed in Section II. Section III provides the problem state-
ment for user mobility prediction. In Section IV, we model user
mobility as an HMM. Section V further depicts the key enabling
technologies for mobility prediction in detail. We evaluate the
models in Section VI by implementing a series of tests on vo-
luminous factual data. Finally, our conclusion and future work
are presented in Section VII.

II. RELATED WORKS

We categorize existing works of understanding user mobil-
ity at POI into two parts: identifying POI, and user mobility
modeling and prediction.

A. Identifying POI

Identifying POIs from user trajectories is a key task in min-
ing mobility patterns and has been studied extensively. Most
prior works attempted to identify POIs by mining individual
GPS data [9], [10], [15]–[18] or Wi-Fi beacons [10], [19]. Com-
monly known methods include time-based clustering [18], [19],
density-based clustering [9], [17], and some popular clustering
algorithms [19]. The k-means algorithm [19], a popular clus-
tering algorithm, is rather effective provided that the number of
clusters is known a priori. Actually, researchers would not know
how many POIs users have. In addition, though the time-based
algorithms [18], [19] are simple and work in an incremental
way on mobile devices, it is difficult to discover places that are
visited with high frequency but short on dwell time. Detected
clusters by using the density-based clustering method [17] ex-
hibit a wide variation in local density. Such clusters can be
divided into several smaller clusters, with locations distributed
uniformly within each small cluster. Some other studies [20]
also identify POIs by using CDRs, which are generated only
when a phone engages in a voice call or text messages.

B. User Mobility Modeling and Prediction

Human movement traces, which are collected from real-life
human mobility or generated using synthetic mobility mod-
els, have been used to explore patterns of user trajectories and
yield insight into a variety of issues, such as urban planning,
disease spreading, and radio resource optimization [21], [22].
Prevalent synthetic mobility models include the random walk
mobility model [23], random waypoint mobility model [24], the
Gauss–Markov mobility model [25], and so on. All these syn-
thetic models attempt to mimic the movements of mobile users
and simulate their mobility patterns using parametric methods
synthetically.

Besides, a number of previous efforts have attempted to model
user mobility based on real-life movement traces. To elicit the
state of the art, we focus on two kinds of modeling: spatio-
temporal modeling and spatial movement modeling. The spatio-
temporal modeling aims to discover the prominent daily tempo-
ral habits as well as predicting future individual activities [8],
[10], [18], [26], [27]. The spatial movement modeling facilitates
the next-place prediction [28], [29], residence time prediction
[30], [31], life pattern mining in the user traces [9], [28], and
identification of departures from mobility routine [32], [33].

Alvarez-Lozano et al. [18] proposed a medium-term spatio-
temporal prediction model based on HMM. However, this model
was tested with only 63 limited users. Zheng and Ni [8] au-
tomatically uncovered and quantified spatio-temporal behav-
ior patterns in users’ daily lives with 95 users from the MIT
Media Lab. They pointed out that users leading highly mo-
bile lives could not be well described by the proposed model.
Scellato et al. [10] proposed the NextPlace method to predict
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spatio-temporal behavior based on the nonlinear time series
analysis of arrival time. The method produced different predic-
tion accuracies for various datasets, largely owing to the differ-
ences in the number of POIs and the total residence time in POIs
of users. Hence, for spatio-temporal prediction, it is meaningful
to use a large pool of users to systematically study the effect of
living habits on prediction performance.

With regard to next-place prediction by spatial movement
modeling, in [34] and [35], HMM for mobile prediction was
adopted and the performance with real-world data was tested.
Si et al. [34] indicated that for a given HMM, the probabilities
of observable variables represented by the historical traces de-
cline, as the length of historical traces increase. The method of
probability normalization solved the problem at the cost of in-
creased computational complexity. A weak prediction accuracy
of 13.85% was obtained with another HMM-based predictor
[35]. In [14] and [36], a series of Markov-based models to
perform next location prediction has been implemented. Their
experimental results revealed that the performance of the order-
2 Markov model was better than the other complex predictors
[14], and the maximum predictability could be approached with
Markov-based models [36]. However, users tested in [14] were
limited in a small region of a college, and Si et al. [34] adopted
only one person as the research object.

Apart from the previous works, we distinguish our work as
follows.

1) The dataset we used is real-world control-plane traffic
collected from a long-term evolution (LTE) cellular data
network, other than global system for mobile commu-
nications, universal mobile telecommunications system,
GPS, or Wi-Fi. Moreover, test users are distributed in a
famous city in Southern China and differ in living habits
and working conditions.

2) To identify POIs from the cellular data network, a clus-
tering method based on the Leader–Follower algorithm
is developed. Distinguishing different BSs by sorting as
well as selecting reasonable self-defined thresholds en-
hance the identification of POIs.

3) By leveraging HMM, we conduct spatio-temporal pre-
diction and propose a new next-place predictor. We also
analyze the living habits of a large pool of users on the
basis of entropy and cluster them into distinct groups. We
have applied these two prediction models on different user
groups and analyzed their performance.

III. INDIVIDUAL MOBILITY PREDICTION

For different individuals, the prediction accuracies of spatio-
temporal prediction are diverse [8], [10]. In terms of next-place
prediction, both the degree of movement randomness [12] and
the size of movement history [11] affect prediction perfor-
mance. Given the diversity in prediction performance of dif-
ferent users, we consider applying different prediction models
(spatio-temporal prediction and next-place prediction) to users
with distinct living habits. In this way, better prediction perfor-
mance can be achieved for practical applications.

This section presents the problem of individual mobility pre-
diction by first defining some basic terms, followed by the prob-
lem statement.

A. Basic Terms

Spatial trajectories can be generated unintentionally when an
individual accesses mobile Internet and moves from one BS to
another. These trajectories are represented by sequences of BS
IDs with the corresponding transition time. To gain practical
insight into user mobility, some basic terms and definitions are
given as follows.

Definition 1: Trajectory. A user’s trajectory Traj is rep-
resented by a sequence of time-stamped locations Traj =
l0, l1, . . . , lk , where li = (xi, yi , ti) (i = 0, 1, . . . , k); (xi, yi)
corresponds to the latitude and longitude coordinate of the BS,
which starts to serve the user at the timestamp ti (∀0 ≤ i < k,
ti < ti + 1). Dist(li , lj ) represents the geospatial distance be-
tween two locations li and lj and is calculated by using Vin-
centy’s formulae [37] with the latitude and longitude coordinates
(xi, yi) and (xj , yj ) of the two locations, respectively.

Definition 2: Place. A place c is a geographical region
within a radius threshold of Dr . Each place carries a seman-
tic meaning, like home, work, gym, and market. In a user’s
trajectory, c is characterized by a set of consecutive locations
L = lm , lm + 1, . . . , ln , where ∀m < i ≤ n, Dist(lm , li) ≤ Dr

and Dist(lm , ln+1) > Dr .
Definition 3: Points of Interest. A POI is a place c where

a person has visited for more than a threshold in terms of the
number of days Tr . Otherwise, it is labeled as “non-POI.” Sec-
tion V will detail the method of POI identification from user
trajectories, respectively.

Definition 4: Travel Sequence. A travel sequence TS =
ts0, ts1, ts2, . . . , tsn is a sequence of time-stamped places in
which all except one are POIs. The “non-POI” is used when
the user is at a place that is not a POI.

B. Problem Statement

The structure of our model is illustrated in Fig. 1. The five
main parts of the model are POI identification from user tra-
jectories, user clustering, spatio-temporal mobility prediction,
next-place prediction, and model selection, respectively.

POI identification: In this component, POIs are extracted by
clustering the adjacent locations in user trajectory Traj, and then
the travel sequence S = s0, s1, s2, . . . , sn is obtained.

User clustering: We analyze users’ living habits character-
ized by entropy profiles, by exploiting the randomness of user
mobility in different time periods. Then, users are clustered into
different groups according to their living habits.

Spatio-temporal mobility prediction: Based on the correlation
between time and places, we predict where a user would appear
at a specific time in the future.

Next-place prediction: By mining spatial movement patterns,
this part aims at predicting the next place a user would visit after
leaving the current place.

Model selection: The prediction accuracies of spatio-temporal
mobility prediction and next-place prediction are evaluated with
regard to distinct user groups. We will verify whether choosing
different prediction models for users with distinct living habits
can improve the prediction accuracy, especially when one model
performs poorly for a certain group.
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Fig. 1. Structure of our model for user mobility prediction: ©1 POI identification, ©2 user clustering, ©3 spatio-temporal mobility prediction, ©4 next-place
prediction, and ©5 model selection.

Fig. 2. Example of an HMM.

IV. MODELING USER MOBILITY BY HMM

As a user’s movement can be characterized by a Markovian
stochastic process [14], we model user mobility as an HMM.
We shall next build HMM-based predictors for spatio-temporal
mobility prediction and next-place prediction.

HMM, as a classic dynamic Bayesian network, is suitable
for recognizing temporal patterns of data sequences generated
by a Markov process with unobservable (i.e., hidden) states
[38]. HMM has two kinds of stochastic variables: state variables
(hidden variables) and output variables (observable variables).
Fig. 2 shows the general architecture of an instantiated HMM, in
which each node represents a random variable. s(t) represents
the hidden state S at time t, and s(t) ∈ {s1, s2, s3}. o(t) ∈
{o1, o2, o3, o4} is the observable state O at time t. The structure
of HMM also implicates two kinds of conditional probabilities:
state transition probability aij=p(sj :t+1|si:t), 1 ≤ i, j ≤ 3 and
output probability bij=p(oi:t |sj :t), 1 ≤ i ≤ 4, 1 ≤ j ≤ 3. The
joint probability distribution of all variables can be simplified
as p(s1:T , o1:T ) =

∏T
t = 1 p(st |st − 1)p(ot | st).

λ = {A,B, π} is introduced to characterize HMM, where
transition matrix A is an N × N matrix and Aij =
P (sj :t+1|si:t), 1 ≤ i, j ≤ N ; confusion matrix B is an N × M
matrix and Bij = P (oi:t+1|sj :t), 1 ≤ i ≤ M, 1 ≤ j ≤ N ; π is
a 1 × N vector and π = [p (s1) , p (s2) , ....p (sN )] (N is the

number of hidden states and M is the number of observable
states).

In general, HMM associates with several inference problems
[38], which are also basically concerned in mobility prediction.
One of them is evaluation, which is to efficiently compute the
likelihood of an output-sequence oi:t for a particular HMM λ.
Applying the principle of dynamic programing, this problem
can be handled efficiently by the forward algorithm [38].

The second problem is decoding. It is to identify the most
likely sequence of hidden states si:t , for a given output-sequence
oi:t and model λ = {A,B, π}. This task finds the maximum
value of p(si:t |λ, oi:t) over all possible hidden state sequences,
and is solved efficiently by the Viterbi algorithm [38].

The third problem is HMM parameter learning. The target
of learning is utilizing existing data to adjust model parame-
ters so that the resulting parameters λ = {A,B, π} can describe
the system structure better. In the process of parameter learn-
ing, an iterative algorithm called the Baum–Welch algorithm
[38] is used. Each iterative procedure calculates a group of
parameters λ∗ = {A,B, π} and the likelihood p(o1:T |λ∗). The
algorithm is considered to have converged if the difference be-
tween p(o1:T |λ∗) and the likelihood of the previous iteration
p(o1:T |λprev) is less than a desired threshold, upon which the
optimal parameters λ are acquired.

V. KEY METHODOLOGIES

To address the challenges of user mobility prediction in our
framework, we first propose the method of POI identification,
followed by users clustering with entropy profiles. Then, HMM-
based mobility models are developed for spatio-temporal pre-
diction and next-place prediction, respectively.

A. POI Identification

In this section, we present the “Leader–Follower Clustering”
[39] for constructing location clusters to reduce the oscillation



5208 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 6, JUNE 2017

effect and identify POIs from user trajectories. The technique
depends on two parameters: a radius threshold Dr and a thresh-
old of the number of days Tr .

First, we calculate the number of days that BSs were accessed
(access-day) based on users’ trajectories Traj, and sort BSs of
every user by “access-day” in descending order. The BS with
the most “access-day” ranks first in the returned sorted list
sortedlocList. Sorting by “access-day” rather than duration
or occurrence is meaningful because it decreases the influence
of vacations or other locations that were visited only on few
days but had relatively long duration or high occurrence. The
distinction of BSs by sorting also modestly enhances the leader
(centroid) detection of each cluster in step 2.

Second, we cluster locations from the sorted list
sortedlocList and return a set containing all “places.” The
first BS in sortedlocList is the centroid or leader of the first
place. The location of following BSs will be compared with the
centroids of existing places. If a BS is away from all existing
places, it becomes the centroid of a new place. Otherwise, if the
BS falls within the threshold radius Dr of an existing place ci ,
it is added to ci as a follower. The centroid of ci is adjusted to
be the average position of all the BSs in place ci .

The third step is POI determination. A set of POIs is
formed by excluding those places with visiting days less than
threshold Tr .

After identifying POIs, a user’s trajectory is converted into a
travel sequence S, which is the input to the subsequent spatio-
temporal prediction and next-place prediction.

B. User Clustering

In this section, we distinguish users’ living habits by cluster-
ing. To obtain knowledge of users’ living habits, the randomness
of user mobility of different time segments is exploited in terms
of users’ place recurrence entropy. The bigger the entropy value
is, the more uncertain a user appears at a specific place in this
time period. If a person has high entropy values all day long,
he/she is considered to be a ranger and wanders in the city ran-
domly the whole day. In contrast, a person appearing at a limited
number of places and having low entropy values is more likely
to be a worker with a regular daily routine.

The idea of user clustering on place recurrence entropy has
been proposed in a recent work [40] by our research team. It uses
the k-means method to cluster entropy vectors E = [e0, . . . ei ]
of all users. The variable ei represents the entropy value of each
segment i(0 ≤ i ≤ 23), which is 1 h long with the first hour
and last hour of the day indexed by 0 and 23, respectively. The
vector of each user indicates the user’s living habits, and the
centroid of each cluster represents the typical features of each
group. We define the entropy value of each time segment ei as

ei = −
n∑

k = 1

pi(ck )logbpi(ck )

where n is the number of places a user has visited in the ith time
segment of all days, b is a constant, ck represents a different
place, and pi(ck ) is the probability of the user staying at place

TABLE I
USER TRAVEL SEQUENCE AS A VECTOR vi

Time(O ) 00:00 ... 8:00 8:30 9:00 ... 23:00 23:30
Place(S ) 1 ... 1 0 3 ... 1 1

O and S denote the observable states and hidden states of HMM, respectively.

ck in the ith time segment that is given as

pi(ck ) =
Ti(ck )

Ti

where Ti(ck ) is the total time duration of the user staying in
location ck in time segment i, and Ti is the total time duration
of the user staying in time segment i.

In Section VI, we discuss how prediction accuracies of spatio-
temporal prediction and next-place prediction depend on users’
living habits.

C. HMM-Based Spatio-Temporal Prediction

Intuitively, users’ current places correlate with time. For ex-
ample, a user is more likely to be at home in the evening and
at workplace during the day. Spatio-temporal prediction investi-
gates the correlation between time and places. To do so, we first
divide day i into 48 time slots of 30 min and convert the travel
sequence of the day into a vector vi , as shown in Table I. Each
time slot contains an index (starting from 0) corresponding to a
place where the user has spent the most time. Zero represents the
user being at non-POI for that time slot. A user’s historical travel
sequence in the observed n days can then be represented by a set
of vectors V = {v1, v2, . . . , vn}. Afterward, we will depict the
definition along with the implementation of the spatio-temporal
prediction model based on HMM.

1) Model Definition: By leveraging HMM to model user
mobility, the spatio-temporal mobility model is defined as fol-
lows.

Hidden states S: These are defined by POIs in users’ travel
sequences, as well as another hidden state representing all the
non-POIs. They are composed of the elements of the second
row in Table I. We denote the ith element of the hidden states S
as si .

Observable states O: These are the 48 time slots of each day
and correspond to the first row in Table I. oi denotes the ith
element of the observable states O.

Vector π: Each element of the vector represents the probabil-
ity a user appears at a given hidden state P (si).

Transition matrix A: It represents the transition probabilities
of different hidden states, i.e., Aij = P (sj :t+1|si:t).

Confusion matrix B: It represents the probabilities of time
slots in which a user is at different hidden states, i.e., Bij =
P (oj |si).

Fig. 3 shows an example of an instantiated HMM for spatio-
temporal mobility modeling that has five time slots. The hidden
states are represented by four POIs.

By using Bayes’ formula, the {A,B, π} modeling mobility
pattern of each user is generated from his/her historical travel



LV et al.: BIG DATA DRIVEN HIDDEN MARKOV MODEL BASED INDIVIDUAL MOBILITY PREDICTION AT POINTS OF INTEREST 5209

Fig. 3. HMM representing POIs and their relationships with time slots of a
day.

sequence vectors V . The vector π is generated as follows:

P (si) =
N(si, V )

|V |
where N(si, V ) denotes the number of times element si occurs
in V , and |V | is the length of vectors V . Each element of the
transition matrix A is derived from

P (sj :t+1|si:t) =
N(si:tsj :t+1, V )

N(si:t , V )

where si:tsj :t+1 stands for si and sj being in time slots t and
t + 1, respectively. The confusion matrix B is similarly derived
from

P (oj |si) =
N(si:oj

, V )
N(si, V )

where si:oj
means the corresponding hidden state in time slot

(observable state) oj is si .
2) Prediction: The previous section has defined the HMM-

based spatio-temporal mobility model. In this section, we de-
scribe how to use such a mobility model for mobility prediction
with historical travel sequence vectors.

Prediction is to discover the most probable place (hidden
state) at each time slot (observable state) in the next day for a
given HMM λ = {A,B, π}; this is an HMM decoding problem.
When predicting all the places to be visited in the day d, the
HMM λ = {A,B, π} is updated periodically at the end of day
d − 1 given the historical travel sequence vectors from day 1 to
day d− 1.

3) Computation Complexity: The computational complexity
of the model is considered from two aspects: a) building the
HMM model by using Bayes’ formula; and b) prediction based
on the Viterbi algorithm.

The complexity of building the HMM model for each indi-
vidual is O(n2

s + ns × no), where ns is the number of hidden
states, and no denotes the number of observable states. Note
that this process is not iterative and thus incurs a rather low
computational complexity.

Based on the Viterbi algorithm, the complexity for predic-
tion is just O(n2

s). As shown in the experiments described in
Section VI-B, each user has a limited number of POIs, and thus
the required computation for this step is low.

Fig. 4. HMM representing doubly stochastic process of the transition between
places.

In addition, the Viterbi algorithm can be approximately ex-
pressed in MapReduce [41]. So, the proposed model can be
parallelized and is thus scalable and applicable to a large dataset.

D. HMM-Based Next-Place Prediction

In this section, we propose a novel next-place prediction
method based on HMM. It first explores the spatial movement
pattern, upon which next-place prediction is carried out.

1) Spatial Movement Pattern Discovery: To quantify the
spatial movement pattern, we first apply HMM to establish the
likelihood prob of subsequences in travel sequences with length
k varied from 2 to 10, as our group has discovered that the
length of frequent subsequences is mostly no more than 10 [42].
For two subsequences of the same length, the one with a higher
likelihood prob means a higher occurrence rate. Fig. 4 shows
the architecture of an instance of HMM for spatial movement
mobility modeling.

Hidden states S: These are defined by the POIs in a user’s
travel sequence, as well as another hidden state representing the
non-POI.

Observable states O: These are defined as the same as hidden
states.

The vector π, transition matrix A, and confusion matrix B
are obtained through the process of parameter learning, which
is defined as follows.

a) Generating an P × Q matrix for parameter learning
from travel sequence TS = ts1, ts2, . . . , tsP . The num-
ber of rows P equals the length of the travel se-
quence TS, and the number of columns Q is ten
representing the maximum allowable length (k) of
subsequences. Elements in row i correspond to the sub-
string (tsrem(i,P ) , tsrem((i+1),P ) , . . . , tsrem((i+9),P )) of TS.
The rem(i, P ) returns the remainder of the division of i
by P .

b) Deriving parameter {π,A,B}. The Baum–Welch algo-
rithm takes the matrix produced in step a) as input, and
obtains the optimal parameters {π,A,B} upon conver-
gence.

Then, given the defined HMM λ = {A,B, π}, the likelihood
prob of subsequences tsi , tsi + 1, . . . , tsi+k−1(0 < i ≤ P, 2 ≤
k ≤ 10) can be effectively calculated by the forward algorithm.

2) Prediction: In the beginning, a hash table seqPattern <
key, value > is created to cache all probable next-places and the
corresponding prob following the previous k − 1 (2 ≤ k ≤ 10)
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TABLE II
EXAMPLE OF THE key–value PAIRS IN seqP attern

key
(first k -1 places of a
subsequence)

value
(List{(k th place,

prob of the subsequence)})

(1,2,3,4) (1,0.39);
(5,0.90);

(1,2,3,4,5,3,4,2) (3,0.85);
(5,0.75);

places. An example of the key–value pairs is illustrated in
Table II. It uses the first k − 1 elements of a subsequence
as hash key. The hash value is a linked list, whose node is
composed of the kth element and the prob of the subsequence.

Then, the predicted next-place t̂s is derived by looking
up the seqPattern based on the previous place sequence
[ts1, ts2, . . . , tsl ](1 ≤ l ≤ 9). If available, the length of the initial
previous place sequence is up to 9, which equals to the maxi-
mum length of sequences in the hash key. In case that the pre-
vious place sequence does not exist in seqPattern, the length
decreases. The pseudocode is given in Algorithm 1, detailed
below.

a) If the length-(l) sequence [ts1, ts2, . . . , tsl ] is found in
the hash table, the probable next-place will be obtained from
the returned linked list. Otherwise, a length-(l − 1) sequence
will be generated repeatedly by removing the first element to
perform lookup operation until a linked list is returned.

b) If multiple possible places are contained in the returned
linked list, the place with the highest prob is selected as the
predicted next-place t̂s.

3) Computation Complexity: The computational complexity
of the model is considered from three aspects:

a) deriving parameters {π,A,B} by using the Baum–
Welch algorithm;

b) inferring the likelihood of subsequences;
c) prediction.

The former two aspects occur in the spatial movement pattern
discovery.

In deriving parameters {π,A,B} by using the Baum–Welch
algorithm, the complexity of each iteration is O(QPn2

s), where
ns is the number of hidden states. The likelihood of subse-
quences is inferred by using the forward algorithm with the
complexity of O(kn2

s). Hence, to enhance efficiency, the spa-
tial movement pattern discovery step should not be performed
after each user’s activity but rather be launched offline and pe-
riodically repeated, e.g., once a day. It is worth mentioning that
the Baum–Welch algorithm and forward algorithm can be im-
plemented in MapReduce [41]. So, the proposed mode can be
parallelized to handle large-scale datasets.

As for the process of prediction, the complexity of the predic-
tion process by applying hash table is only O(l). The prediction
task with such a low complexity can thus be performed online.

Algorithm 1: Pext-Place Prediction

Require: [ts1, ts2, . . . , tsl ] sequence of previous l places,
seqPattern < key, value > hash table of
subsequence pattern

Ensure: t̂s predicted next-place
1: function NextPlacePrediction [ts1, ts2, . . . , tsl ],

seqPattern
2: len = l; placeSeq = [ts1, ts2, . . . , tsl ];
3: while len do
4: key=placeSeq
5: if key in seqPattern then
6: Linkedlist [possibleP lace, prob] =

seqPattern. get (key);
7: t̂s = SelectPlaceofMaxProb(Linkedlist

[possibleP lace, prob]);
8: break;
9: else

10: len = len − 1; placeSeq =
[tsl−len+1, . . . , tsl−1, tsl ];

11: end if
12: end while
13: return t̂s
14: end function

Fig. 5. LTE mobile network with data capture devices.

VI. EXPERIMENTAL EVALUATION

In this section, we give an overview of the dataset before de-
scribing the results of POI identification. Then, we exhibit the
entropy profiles of clustered groups. In the end, the effective-
ness of the next-place predictor and spatio-temporal predictor,
together with their performance on different user groups, is pre-
sented.

A. Dataset

We use the real mobile data collected by the commercially
deployed traffic monitoring system (TMS), which has been de-
veloped by our research team. As shown in Fig. 5, the TMS
is deployed between evolved Node Bs (eNodeBs) and mobil-
ity management entity of an LTE mobile network. It analyzes
LTE control-plane traffic generated by user equipment, such as
mobile phone and tablet. A sequence of time-stamped records
of signaling procedures [43], which contain current service
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Fig. 6. Average number of POIs per user versus (a) Dr w.r.t Tr =0 and (b)
Tr w.r.t Dr =1000 m.

eNodeB ID, signaling procedure code, user’s anonymized ID,
etc., are produced. The data are stored in a log database and
periodically uploaded by an uploader to Hadoop distributed file
system [1].

By leveraging self-developed MapReduce programs that run
on a distributed computing platform [1], we extract users’ tra-
jectories from all mobility related records, including not only
path switch and handover procedures during data transmission
but also normal and 12-min periodic tracking area update pro-
cedures in the idle period without data network activity [43].
Owing to the dominance of cellular data traffic as well as
the denser locations extracted from control-plane traffic than
GTP-U (GPRS Tunneling Protocol for User Planes) traffic, our
dataset provides more sufficient location information than pre-
vious works from the view of cellular networks [3], [44].

Twenty-two days, from October 10, 2013 to October 31, 2013,
of data consisting of over 3000 mobile phone users moving
around a city with 1613 eNodeBs were collected. Overall, we
have collected 37 570 167 records of mobility-related signaling
procedures. Specifically, the dataset from October 10 to October
24 is treated as the training set to build models and the rest
is the testing set. These records consist of a broad range of
users’ outdoor movements, including life routines (like going
home and going to work), some entertainment activities (such
as shopping, sightseeing, dining, or hiking), and so on. These
voluminous records can thus be convincingly used to validate
movement prediction methods under the big data scenario with
users sharing different living habits.

B. POI Identification

As described in Section V-A, the POI identification process
takes user trajectory Traj, radius threshold Dr , and day number
threshold Tr as input. To extract POIs correctly, we select suit-
able thresholds of Dr and Tr by investigating how the average
number of POIs changes as a function of the threshold itself.

We first study the effect of Dr with fixed Tr = 0. Fig. 6(a)
reports that the average number of clusters decreases as Dr (in
meters) increases. To find the optimal threshold, a “knee” is
found in the curve, where a significant change in the slope of
the graph is observed [16], as the knee signifies the radius just
before the number of locations begins to converge to the number
of places. The threshold of Dr is set to 1000 m.

Fig. 7. Entropy profiles of four different groups of users. The x-axis represents
the 24 time slots of a day while the y-axis reports the entropy values of the
centroid of each group.

Next, we tune Tr with fixed Dr = 1000 m. Fig. 6(b) shows
the average number of POIs declines rapidly in two ranges
(Tr = 0 to Tr = 7 and Tr = 16 to Tr = 20), and two knees are
observed in the curve. As Tr increases from 0 to 7, the curve
drops sharply and the number of POIs converges to a stable level.
Then, the second decline from 16 to 20 is for excessive deletes.
For example, a woman regularly goes to the gym on Monday
other than every day. If the threshold is set at the second knee, the
actual POIs of the gym will be removed, and the remaining POIs
are places visited almost every day. Hence, we set the threshold
value of Tr to 7. In this way, all possible POIs, which are visited
more than 31.8% of the overall 22 days, are identified.

The average number of POIs is 7.5 among all users. We
denote C1 as the place that the user stays for the longest time,
C2 as the place with the second longest duration, and so on. On
average, users spend 51.35% of the whole observation period at
C1, 14.86% at C2, and 7% at C3. The resident time of the top
two places (usually home and workplace) accounts for 66.22%.
Similar to [45], users spend most at a limited number of places
(the findings of [45] indicate that users spend 56% of their time
at C1, 14% at C2, and 7% at C3.). The experimental result
shows that the mobility trajectories applied in this paper have
similar characteristics with those from others’ works. Moreover,
our method of identifying POIs is effective in analyzing user
trajectories extracted from the cellular data network.

C. User Clustering

According to users’ place recurrence entropy of different time
segments, test users are clustered into four groups empirically to
distinguish users’ living habits. The labels shown in Fig. 7 intu-
itively describe the properties of the four groups. The properties
and the proportion of users per cluster are as follows.

1) Day postman (27%): During the day, he/she moves around
the city and spends time at various places. At about
6 p.m., he/she commutes back home and the entropy value
decreases.

2) Family person (34%): All day, his/her entropy is low in
that he/she visits few fixed places. He/she is inferred to
lead a regular life pattern in his/her daily life.
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Fig. 8. Distribution of the numbers of POIs w.r.t. different user groups.

3) Party person (17%): Relatively, he/she spends afternoon
and night hours at various places.

4) Hard postman (20%): He/she moves around the city and
spends time at various places from early morning until
late at night.

Fig. 8 exhibits the distribution of the number of POIs with
regard to different user groups. Users with distinct living habits
show different distribution patterns. A “Family person” leading
a regular life pattern has few POIs. In contrast, individuals with
the label of “Hard postman” possess the most POIs, ranging
from 9 to 13. The users in the group of “Day postman,” who are
active in the morning, have relatively more POIs than individuals
in the group of “Party person” moving around in the afternoon
and night hours.

D. Performance of Prediction Models

In this section, we introduce the performance metrics for eval-
uating the two prediction models. We then provide a comparative
assessment of our proposed models with existing location pre-
diction methods. Finally, we study the effects of the two models
on different user groups.

1) Evaluation Metrics and Baselines: To quantitatively eval-
uate the two prediction models, we consider the metric predic-
tion accuracy:

a) HMM-based spatio-temporal mobility prediction model
(HMM-ST): The metric prediction accuracy represents
the ratio between the number of correct predictions and
the number of all attempted predictions in the testing set of
a user. Correctness is defined as follows: If we predict user
i will be at place c at time T , the prediction is considered
correct if the user is at c at any time during the interval
[T − θ, T + θ], where θ is the error margin.

b) HMM-based next-place prediction model (HMM-
NEXT): the metric prediction accuracy stands for the pro-
portion of correct predictions to all attempted predictions
in the testing set of a user.

Comparison methods. The HMM-ST and HMM-NEXT are,
respectively, compared with the following existing state-of-the-
art predictors:

TABLE III
TIME CONSUMPTION OF MODELS IN PREDICTION

Type Prediction Time
Model Consumption

O (P )
Spatio-temporal prediction NextPlace

(baseline)
P is the length of a user’s all

historical travel sequence
O (n2

s )
Spatio-temporal prediction HMM-ST ns is the number of hidden

states (POIs)
O (l)

Next-place prediction O(2)-Markov
(baseline)

l is the length of a user’s
sequence of previous places

applied to prediction
Next-place prediction HMM-NEXT O (l)

a) NextPlace [10]: This model predicts spatio-temporal be-
havior based on the nonlinear time series analysis of the
arrival and residence times of users. The time series is
embedded in an m-dimensional space. Performance eval-
uation indicates that the model with dimension m = 3
performs better.

b) Order-2 Markov model with fallback (O(2)-Markov) [14]:
The trajectory of each individual is modeled as a Markov
chain of order 2 when conducting next-place prediction.
Moreover, the fallback technique, which uses the result
of the Order-1 model when it encounters an unknown
context, is employed to the normal Order-2 model.

To the best of our knowledge, NextPlace’s performance has
been demonstrated to be the best in the literature in terms of
spatio-temporal mobility prediction. Moreover, extensive ex-
periments [14], [36], [40] indicate that O(2)-Markov performs
better than other complex predictors in terms of predicting the
next-place. Hence, the two most effective models, NextPlace
and O(2)-Markov, are selected as baselines in comparative eval-
uation: the HMM-ST and HMM-NEXT will be, respectively,
compared against NextPlace and O(2)-Markov.

Moreover, our proposed models and the baseline models are
comparable in terms of time consumption when conducting
prediction, as shown in Table III. They all have the advantage of
short time-consumption and satisfy the requirement of real-time
prediction.

2) Comparative Evaluation:
a) Comparison between HMM-ST and NextPlace: Tak-

ing a user’s travel sequence as input, both the two predictors
predict where the user will be in the 48 slots of the i + 1 day at
the end of the ith day. Specifically, the group of Family person is
chosen for the comparative evaluation, as the main idea behind
the NextPlace is that human behavior is strongly determined by
daily patterns. Also, owing to the fact that NextPlace performs
better for a bigger error margin θ[10], we set the error margin
θ as 15 min, which is half of each time slot. Fig. 9(a) shows
that the HMM-ST performs better. Besides, nearly 65% of users
are excessively predicted to be at non-POI [10] in the whole
day by NextPlace, which does not conform to the fact. Further-
more, Fig. 9(b) shows the performance of NextPlace in terms
of prediction precision applied in [10] where NextPlace was
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Fig. 9. Comparative evaluation of spatio-temporal mobility prediction model:
(a) average prediction accuracy of each time slot of the two mobility predictors
and (b) prediction precision of NextPlace of different time slots in a day.

Fig. 10. Comparative evaluation of next-place prediction model: (a) cumu-
lative probability of prediction accuracy of O(2)-Markov predictor relative to
HMM-NEXT, and (b) prediction accuracy distribution of HMM-NEXT.

proposed. Different from prediction accuracy representing the
ratio between the number of correct predictions and the num-
ber of all attempted predictions, prediction precision is the ratio
between the number of correct predictions and the number of
predictions forecasting the user to be at a POI. It reaches as
high as 80% and is about 50% in some time slots. In NextPlace,
predicting users to be at non-POI during the whole day can be
caused by changing mobility pattern or deviation from fixed
mobility pattern. Thus, NextPlace as an effective predictor per-
forms outstandingly for users with fixed daily pattern. HMM
has a stronger learning ability and HMM-ST can be applied to
a wider range of users.

The fact that HMM-based spatio-temporal predictor has a bet-
ter performance can be explained as follows. NextPlace merely
focuses on the arrival and residence time at POIs, and it does
not consider the transition probabilities among POIs as well as
the different probabilities of user appearing at various POIs. Es-
pecially, when several places satisfy the prediction, NextPlace
randomly chooses one among them [10].

b) Comparison between HMM-NEXT and O(2)-Markov:
The two predictors both use a user’s travel sequence as input
and predict most the probable place to be visited next. Fig. 10(a)
shows the relative prediction accuracy of O(2)-Markov as com-
pared to HMM-NEXT. The relative prediction accuracy less
than one indicates HMM-NEXT works better than O(2)-Markov
for these users, who account for almost 70% of users. The pre-
diction accuracy of 10% of users achieved by HMM-NEXT
is twice that of O(2)-Markov. Moreover, though the remain-

Fig. 11. Average accuracy of each time slot in the whole day w.r.t the four
user groups.

ing 30% of users have a lower accuracy using HMM-NEXT,
the relative ratio is mostly less than 1.1. Overall, HMM-based
predictor performs better than Markov models in terms of pre-
diction accuracy. Fig. 10(b) illustrates that for almost 60% of
users, HMM-NEXT achieves an accuracy of over 80%.

There are two reasons why our approach gets better results
than the Markov model without considering algorithm com-
plexity: i) Different from the order-2 Markov model that merely
considers the current and previous places, our approach takes
as many as nine latest places into account. The longer sequence
of latest places leads to better prediction [14]. Moreover, when
the sequence is not found in the hash table, the length of the
sequence decreases, which indeed helps improve the predictor’s
performance; and ii) HMM uses doubly stochastic process to
describe the transition between places and shows significant
advantage over the simple Markov model [38].

3) Performance on Different User Groups: a) Efficiency of
HMM-ST w.r.t different user groups: Fig. 11 depicts the aver-
age prediction accuracy of every time slot for each group. By
combining the analysis of Figs. 11 and 7, the prediction accu-
racy shows a negative correlation with entropy profiles. Family
person with the lowest entropy in the whole day has the highest
prediction accuracy. The prediction accuracy of Hard postman
is as low as 30% from 7:00 a.m. to 8:00 p.m., which results from
high entropy values at these time segments. Thus, high entropy
increases the uncertainty of a typical user’s whereabouts and
decreases the mobility prediction accuracy.

b) Efficiency of HMM-NEXT w.r.t different user groups: Con-
sidering the performance distinction between the Family person
and others in terms of spatio-temporal prediction, the Hard post-
man, Day postman, and Party person are treated as one group
named “others” in the evaluation of HMM-NEXT. As shown in
Fig. 12(a), over 90% of “others” have an accuracy of more than
60%, and 50% of them have an accuracy of over 80%. How-
ever, users with the prediction accuracy exceeding 60% merely
account for less than 30% of Family person. For further de-
tails, we measure the relationship between prediction accuracy
and the length of travel sequences in the training set (training
set size), since the diversity in users’ living habits leads to the
disparity in frequencies of place transition. Fig. 12(b) presents
the distribution of prediction accuracy of HMM-NEXT w.r.t.
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Fig. 12. Performance of HMM-NEXT: (a) prediction accuracy of HMM-
NEXT with different user groups, and (b) prediction accuracy of HMM-NEXT
versus the length of travel sequences in training set.

the length of travel sequences and its fitted curve. It indicates
that the length is directly linked to prediction accuracy, espe-
cially when the length is very short. It infers that the size of the
training set affects how much information is included for the
next-place prediction. Users with limited size of movement his-
tory are more likely to produce false prediction. For over 80%
of “others,” the training set size is more than 500. However, the
travel sequences of Family person with a length mostly rang-
ing from 0 to 100 fail to stabilize the movement patterns, thus
resulting in a low accuracy of next-place prediction.

We summarize our main findings as follows.
1) The prediction accuracy of the spatio-temporal mobility

predictor shows a negative correlation with users’ entropy pro-
files and varies among distinct user groups with different living
habits.

2) The spatio-temporal predictor performs better than the
next-place prediction model for users leading regular lives and
with short traces.

3) For users who move randomly, next-place prediction pro-
vides a more effective way to conduct user mobility analysis and
produces more convincing prediction results. Overall, consider-
ing entropy profile and trace length of users, the spatio-temporal
prediction and next-place prediction can be used alternatively
as an effective method for user mobility prediction.

VII. CONCLUSION

Summary of contribution: In this paper, we have investigated
the effect of living habits on the models of spatio-temporal pre-
diction and next-place prediction. HMM can be employed to
model user mobility from the two prediction perspectives. By
investigating the movements of large-scale users collected from
LTE control-plane traffic of a whole city in Southern China for
22 days, we have compared the HMM-based predictors with ex-
isting models and verified the feasibility of the proposed predic-
tors. In addition, the living habits of users were analyzed based
on entropy, according to which users were clustered into distinct
groups. We have applied the two predictors to these groups and
discovered many meaningful observations. The accuracies of
spatio-temporal mobility prediction depend on users’ entropy
profiles and vary among distinct user groups. Users leading reg-
ular lives and with short traces are better modeled from the
spatio-temporal perspective. Next-place prediction provides an

efficient way to model user mobility for ones leading highly
mobile lives. It also suggests that the factors of entropy profile
and the length of user traces should be taken into consideration
in future user mobility modeling so that an optimal mobility
prediction method can be applied to an individual to reach reli-
able prediction results in practical applications. In particular, it
is essential to give individuals control over whether the mobility
prediction model can be applied to their daily lives in view of
privacy concerns.

Limitations: The proposed methodology clusters users into
several groups according to users’ living habits by analyzing
entropy values of different time segments. Our future efforts
aim at extracting users’ mobility pattern to classify users and
characterize personal life routines. Then, we will further explore
human-centered prediction algorithms with high prediction ac-
curacy. Moreover, we will apply datasets of different sizes to
further validate the performance and efficiency of the proposed
models.
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