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The dynamics of many social, technological, and economic 
phenomena are driven by individual human actions, turn-

ing the quantitative understanding of human behavior into 
a central question of modern science [1]. Nowadays, human 
behavior is reshaped by the explosive growth of the Internet, 
which has utterly transformed the world, making studies about 
human behavior on the Internet a research hotspot. In the era 
of mobile Internet, a vast amount of mobile big data allows us 
to gain further insights into human activities (e.g., how people 
act, move, and respond to external events). Instead of finding 
the statistical law of Internet usage, many researchers try to 
find out what are the factors that “induce” people to surf on 
the Internet, the answer to which may bring new models to 
describe human activities. 

It has been found that many factors may impact people’s 
app usage behavior on smartphones, such as the devices peo-
ple use, users’ personalities, surrounding environments, and 
nearby users [2–6]. Recently, it has been proven that location 
has a strong influence on what kinds of apps we choose to use 
[7, 8]. For example, music apps prevail at home, social net-
working/email/news apps were mostly used outside the home 
and workplace, students liked to use the Android browser in 
classrooms, but consumed more traffic on ESPN and Pandora 
in the dorm. Time and travel behavior can also shape app 
usage behavior. Researchers found that people may use Angry 
Birds, Facebook, and Kindle before bedtime, and multimedia 
apps are more popular than travel apps when people are trav-
eling [9].

Although lots of work has verified that location, movement 
frequency, and daily activities have influence on users’ app 
usage behavior [7–9], the quantitative relationship between 
human mobility and app usage behavior in mobile Internet 

remains unknown. In this article, a rating framework is pro-
posed to measure the relationship between human mobility 
and app usage behavior, which could be applied to all kinds of 
mobile big data collected from different areas. In particular, 
we try to find the answers to the following questions: “What 
mobility features have influence on people’s app usage behav-
ior?” “To what extent does human mobility impact people’s 
app usage behavior?” “Are there rules connecting mobility 
features of crowds and individuals with app usage in urban 
areas?” We aim to give useful suggestions to service providers, 
and bring new insight to propose new models for app usage 
behavior and human mobility. More practically, building the 
bridge between human mobility and mobile Internet would 
tell us what people need in daily activities, which may help 
construct smart cities, benefit location-based services, and 
optimize network resources by content pre-fetching. The con-
tributions of this article are highlighted as follows:
1. To the best of our knowledge, we are the first to measure 

the relationship between human mobility and app usage 
behavior. In order to reveal the internal mechanism of app 
usage behavior from the human mobility point of view, we 
focus on the impact of both crowd and individual mobili-
ty behavior on app usage. We found that although people 
usually have a wide range of preferences with app usage, a 
limited number of mobility and time features is enough to 
forecast app usage behavior of crowds and individuals with 
high accuracy.

2. The rating framework is designed to process traffic traces, 
select the significant features of human mobility, and fore-
cast the app usage behavior. Although the selected fea-
tures may vary with cities, regions, and countries, the rating 
framework can be applied to all kinds of mobile big data 
collected from different areas.

3. In order to discover the rules that govern human behavior, 
real mobile big data are essential. We do our experiments 
with real network traffic traces of mobile Internet collected 
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from a typical city in China covering over 3 million people 
in 7 days. 
The structure of the article is organized as follows. First, the 

results of statistical analysis based on real-world data are pre-
sented, which reveal there is strong correlation between app 
usage, location, and time for both individuals and crowds. Sec-
ond, we provide the overall structure of the rating framework. 
It focuses on three aspects of human mobility features in urban 
area, including individual mobility characteristics (e.g., the trip 
distance distribution, the radius of gyration, and the num-
ber of visited locations over time), location (e.g., the places 
users frequently visited), and travel behavior (the movement/
travel pattern, e.g., in commuting). Then we give experimen-
tal results and analysis from the rating framework. The most 
significant features of mobility pattern for both individuals and 
crowds, which have heavy impact on app usage behavior, are 
selected with a score value. Furthermore, the effectiveness of 
the framework is tested by forecasting app usage behavior with 
selected significant features. Finally, conclusions are drawn.

Movements Revealing the App Usage 
Behavior on Smartphones
Smartphones have touched so many different areas of our 
lives. It allows people to get news and updates immediately, 
whether it is through an application or the browser. Naturally, 

app usage behavior in ordinary life exhibits a certain degree 
of temporal/spatial regularity. For an individual, app usage 
behavior may vary with time and location. As shown in Fig. 
1a, looking into Bob’s app usage behavior on the temporal 
dimension, it is found that he usually sees the news after get-
ting up in the morning, checks stock before work, chats on 
WhatsApp and browses social networks on the phone during 
daytime, views comments on Yelp and shares photos with 
friends during evening activities, and watches video and listens 
to music at night. Also, as for app usage in places/locations to 
which Bob often goes, some regular patterns are very obvious, 
such as that he likes to browse social networking, and watch 
videos and movies at home; on his way to work, he may read 
books, check emails, or watch a movie on the phone; at the 
workplace, Bob occasionally chats with friends and checks 
stock trends; and he shares photos on social networking apps 
when he is in a bar. In addition, for crowds, there are also reg-
ular patterns at crowd gathering places (Fig. 1b). For example, 
sharing photos and videos on social network while watching 
sports or a concert is very popular; checking reviews on Yelp 
or coupons on Groupon is very helpful at restaurants; and 
video, movie, and music apps are frequently used at home. All 
these daily behaviors show potential rules that connect app 
usage and mobility behavior. 

In order to discover statistical patterns of app usage behav-
ior from the temporal and spatial dimensions in a statistical 

Figure 1. Regular app usage behavior in ordinary life: a) the app usage behavior of an individual exhibits a certain degree of time 
and space regularity; take Bob’s daily behavior as an example; b) app usage behavior of crowds emerges at crowd gathering 
places.
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manner, the distributions of flow numbers of music, e-com-
merce, video, and communication apps at different time peri-
ods and locations are draw in Fig. 2. All flows are collected 
from a typical northern city in China that covers a population 
of nearly 300 million. Here, “flow” is defined as bidirection-
al data transmission at the usual 5-tuple {IP, destination IP, 
source port, destination port, and transport protocol} within 
a certain period of 64 s. For our dataset, location refers to the 
coverage of a cell tower through which users’ smartphones 
connect, with an average error of 175 m (the density of a cell 
tower is much larger in an urban area than in a suburban or 
rural area due to the human population density). As shown 
in Fig. 2a, the flow number of apps changes periodically, so 
the trends of distinct apps over seven days are quite differ-
ent. Communication apps such as WeChat (a mobile text and 
voice messaging communication service) and QQ (an instant 
messaging software service) averagely generate over 229 mil-
lion flows each day during the whole week, the most inten-
sive usage occurring around 9 p.m. What’s more, e-commerce 
apps such as Taobao (the leading online consumer-to-con-
sumer platform in China) and Jingdong (one of the largest 
business-to-customer online retailers in China) generate nearly 
53 million flows each day, and reach their access peak at 11 
a.m. or 8 p.m. everyday. In addition, the app usage in different 
locations is examined to find if there are similar “signatures” 
at similar locations. First, we sort the locations by generated 
flow numbers from large to small, and then draw the distri-
bution of the flow number of the first 30 locations for music, 
e-commerce, video, and communication apps, as shown in Fig. 
2b. It was found that the flow number of apps follows similar 
trends at the same location on different days, but distinct apps 
could easily be distinguished by the trends. 

The flow number distributions of apps at locations of differ-
ent functions are further studied. Sampled locations include 
a business zone, a restaurant, and a residential area (Fig. 3). 
Regular patterns of app usage behavior emerge at the same 

location on different days. People prefer to use mobile Inter-
net in the business zone, generating over half a million flows 
in a day on average. The three most popular apps in busi-
ness zones are map, weather, and communication apps; while 
music, news, and communication apps are more common in 
restaurants; and in residential areas, music, e-commerce, and 
video are the most frequently used apps. 

All the above analyses show that app usage has a strong 
relationship with time and location, which drives us to quantify 
their relationship, and forecast current app usage based on the 
history of app usage and mobility behavior.

Framework to Measure the Relationship 
between Human Mobility and App Usage 
Behavior
In order to measure the relationship between human mobility 
and app usage behavior, it is essential to choose the most “sig-
nificant” features of mobility behavior, which could be seen 
as the “fingerprint” of app usage to identify/forecast the app 
usage behavior of people. Here, we present a five-step rating 
framework to measure the relationship between app usage and 
mobility behavior, as shown in Fig. 4.
Step 1: Flows generated by users are collected from second/

third/fourth generation (2G/3G/4G) networks. 
Step 2: People’s movement histories and used apps are extract-

ed from flows in the form of 5-tuple {user ID, cell tower 
ID, timestamp, duration, app}. A cell tower’s ID is replaced 
with its latitude and longitude, which turns the 5-tuple into 
a 6-tuple {user ID, latitude, longitude, timestamp, duration, 
app} as the input data of the third step. 

Step 3: Calculate mobility features in view of individual mobil-
ity indicators, travel patterns, and locations. 

Step 4: Mobility and time features with high score values are 
selected as significant features that may have heavy impact 
on app usage behavior. 

Figure 2. The flow number distributions of music, e-commerce, video, and communication apps varies with time and locations: a) 
flow number varies with time on different days; b) flow number varies with location on different days.
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Step 5: Selected significant features are used to forecast users’ 
app usage behavior. 
The forecast results are evaluated with a receiver operating 

characteristic (ROC) curve. The framework is suitable for 
analyzing mobile big data in different networks or countries, 
to discover the rules hidden in people’s daily movements and 
app usage behavior. It is especially useful for location-based 
recommendation service and the study of human dynamics.

Data Description
The data packets in mobile networks are collected by our 
self-developed traffic monitoring system (TMS) [10], which 
monitors packets and aggregates them into flows in real time. 
In order to analyze users’ app usage behavior, we focus on 
HTTP flows. Each HTTP flow contains the following details: 
a user’s anonymized identity, timestamp, the URL accessed, 
and cell ID. As a result, the applications users use are dis-
tinguished by keywords in URLs, such as twitter, mail.google, 
and map.google. The location of users is positioned within the 
coverage of a cell tower.

As shown in Fig. 4, for our dataset, in 2G or 3G networks, 
a smartphone communicates with a base transceiver station 
(BTS) or NodeB, which transmits its network traffic to a base 
station controller (BSC) or radio network controller (RNC). 
TMS is deployed on a Gn interface, which is between the 
gateway general packet radio service (GPRS) support node 
(GGSN) and serving GPRS support node (SGSN). In 4G net-
works, an evolved NodeB (eNodeB) establishes the connection 
between user equipment and a mobility management entity 
(MME). TMS is deployed between a serving gateway (S-GW) 
and packet data network (PDN) gateway (P-GW) to collect 
user plane data, which carries the network user traffic.

Calculating the Features
Mobility Indicators: Nowadays, large-scale human mobility is 
described by three widely accepted indicators: the trip dis-
tance distribution, the radius of gyration, and the number of 
visited locations over time [12]. These three measures contain 
the basic ingredients to describe the individual trajectories, 

in which frequent travels occur between a limited number 
of places, with less frequent trips to new places outside an 
individual radius. The trip distance distribution p(r) quantifies 
the relative probability of finding a displacement of length r 
in a short time. The radius of gyration of a user’s trajectory 
refers to the root mean square distance of each location in the 
user’s trajectory from the center of the trajectory. It reveals 
how extensively users move instead of capturing the practical 
distance. Visiting the same sequence of locations in a circle 
continuously does not increase the radius of gyration’s value, 
while a straight line movement does. The number of visited 
distinct locations over time describes how frequently a user 
visits new places. 

Locations: It is known that the app usage behavior of people is 
different at distinct locations. The source data records users’ 
locations only at the granularity of a cellular antenna, which is 
accurate enough to define people’s location in an urban area. 
Usually, a user’s current position could be narrowed down to 
the range of a station, a commercial/residential area, an edu-
cational/industrial/government building, and so on. As a result, 
for crowds, we consider locations in the city as mobility fea-
tures that could influence app usage behavior. For individuals, 
we only consider the five most frequently visited locations for 
each person.

Travel Patterns: Travel patterns may affect what apps people 
choose to use [9]. Discovering a pattern is a matter of finding 
maximal continuous movements. Therefore, we apply a mod-
ified version of the a priori algorithm to discover a maximal 
sequential pattern. The support value of discovered maxi-
mal continuous movements should be larger than the support 
threshold [13]. Here, support value is the ratio of pattern num-
ber p appearing in trajectories to the number of trajectories, 
and the support threshold is selected when all the patterns’ 
average length reaches the longest. Travel patterns of individ-
uals refer to the routine movements that happen every day for 
a particular person (e.g., commute from home to workplace 
every morning). For crowds, travel patterns show how large 

Figure 3. The flow number distributions of apps in locations of different functions.
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groups move in the city (e.g., a large group of people travel 
from suburban residential areas to the financial district at the 
core of the city every morning). 

Scoring the Selected Features
In order to select mobility features that have big impacts on 
people’s app usage behavior, we apply chi-squared statistic 
evaluation [14] to give a score value to each feature. Chi-
squared statistic is commonly used for testing relationships on 
categorical variables. In our case, mobility features with high 
score values are the selected significant features, which can 
be used to quantify the relationship between mobility and app 
usage behavior. 

Forecasting the App Usage
Selected mobility features are evaluated by adopting the non-
linear support vector machine (SVM) [15] to forecast peo-
ple’s future app usage behavior. SVM is a supervised learning 
model with associated learning algorithms that analyze data 
and recognize patterns, used for classification and regression 
analysis. The prediction results of the rating framework are 
the classification results of SVM based on selected mobility 
and time features. Meanwhile, the efficiency of forecasting is 
measured on the basis of the ROC curve, and related charac-
teristics are listed below:
• True positive rate (TPR)/false positive rate (FPR) defines 

how many correct/incorrect positive results occur among all 
positive/negative samples available during the test.

• Precision is the number of true positives divided by the total 

number of elements labeled as belonging to the positive 
class. 

• The ROC curve is created by plotting the TPR against the 
FPR at various threshold settings. The best possible predic-
tion method would yield a point in the upper left corner or 
coordinate (0,1) of the ROC space, representing 100 per-
cent sensitivity (no false negatives) and 100 percent specific-
ity (no false positives). In this perfect case, the area under 
the ROC curve is one.

Results and Analysis
In this section, the rating framework is tested by real network 
traffic traces from crowds’ and individuals’ points of view. An 
experimental dataset is collected from 2G/3G/4G networks, 
lasting for 7 days and covering nearly 3 million people. First, 
we introduce the apps used in the experiment. Then we calcu-
late the mobility features and give each of them a score value 
to select the significant features that have big impacts on app 
usage behavior. Finally, the selected features are proved to 
have a strong relationship with app usage behavior only if they 
forecast future app usage behavior with high accuracy. 

Measure the Relationship between Mobility and App 
Usage Behavior of Crowds
App Categories: In order to select the significant mobility 
features of crowds, we classify the popular apps by examining 
keyword of the URI field in each flow; for example, if there 
is a “Facebook” in the URI field of a flow, this flow will be 

Figure 4. Overall architecture of the rating framework.
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classified as “social network.” We categorize the apps into 
eight groups, each category representing one type of app, 
including e-commerce (online shopping apps, e.g., Taobao, 
and Jingdong Mall), video (online video apps, e.g., iQIYI, 
and Youku), communication (mobile text and voice mes-
saging communication, e.g., WeChat, and QQ), map (online 
video apps, e.g., Baidu Map and QQ Map), weather (weather 
information apps, e.g., China Weather and Xiaomi Weather), 
news (e.g., Tencent News), email, and life (apps for restau-
rant reviews, e.g., Dianping). Note that in the experiment we 
only take the flows generated by the above popular apps into 
consideration. 

Selecting the Significant Features of Crowds with High Scores: 
As mentioned above, we focus on the time feature and three 
aspects of human mobility in an urban area. Significant fea-
tures are selected according to the scoring results from our 
rating framework:
• Mobility indicators: We calculated the statistical value of 

three mobility indicators:
 1. Minimum, maximum, average, median, standard devia-

tion, skewness, and kurtosis value of trip distance distribu-
tion in current day and hour

 2. The value of radius of gyration in current day and hour
 3. The number of visited locations at current day and hour
 The total number of selected features of mobility indicators 

are 18. Here, the value of mobility indicators at the current 
day or hour means calculating the duration value between 
(0 a.m., current time) or (the beginning of the current hour, 
current time).

• Location: The top 1000 locations with largest number of 
people in the city. Here, a distinct number of people that 
connected with each cell tower is counted.

• Travel pattern: 100 most popular/frequent movement pat-
terns happening between the top 1000 locations. In our 
experiments, the support threshold is set to 0.01 to make 
sure the average mobility pattern length is the longest.

• Time: 24 time intervals (one hour for each interval) in a day.
We calculated the chi-squared value for each mobility and 

time feature (18 statistical features of mobility indicators, 1000 
locations, 100 movement patterns, and 24 time intervals). At 
last, the remaining 152 features (900 locations and 90 trav-
el patterns are removed; only 10 high score travel patterns 
between 100 selected locations remain) are selected to eval-
uate the rating framework by forecasting app usage behavior 
of crowds. 

Evaluation: The experimental dataset only includes flows gen-
erated by selected popular apps, and generated in 100 selected 
locations. We randomly pick 10,978 flows as the training set 
and 1107 flows as the testing set. 

The forecast results are listed in Table 1. If only some of 
the significant features are used to forecast the app usage 
behavior, the results are not sufficient. The combination of all 
features achieves 90.751 percent forecast accuracy. In addi-
tion, as shown in Fig. 5, we can clearly see that all significant 
features together reach the highest precision (0.908) with high 
ROC area (0.908), high TPR (0.918), and low FPR (0.092). 
For crowd behavior, the experiment only considers a limit-
ed number of locations, travel patterns, and people, but still, 
location-based service will benefit greatly if we know which 
group of people will prefer to use what kind of apps at some 
locations in the city.

Measure the Relationship between Mobility and App 
Usage Behavior of Individuals
Different from crowds’ behavior, each individual only uses 
a limited number of apps, visits few locations, and most of 
individuals commute regularly between home and workplace 
in daily life. In order to study the correlation between one’s 
mobility and app usage behavior, the proposed method will 
be applied to the data of each individual. And the rating 
framework can be deployed on an individual’s smartphone 
to provide a personalized model, which selects the significant 
mobility features to predict future app usage of the current 
user totally based on his/her data.

Popular Apps for Individuals — Since individuals only have 
a limited number of interests (in our previous experiments, 
we found that the number of apps one user visited in a week 
is seven on average), we selected eight apps that contribute 
more to flows than other apps in our dataset to do the experi-
ment for individuals, including WeChat (mobile text and voice 
messaging communication app), Baidu Map (online map and 
navigation app), Taobao (app for online customer-to-custom-
er shopping), QQ Game (app for online games), QQ Music 
(online music app), Xiaomi Weather (weather information 
app), QQ News (news app), and Didi Dache (app of a taxi 
calling platform).

Selecting the Significant Features of Individuals with High Scores: 
• Mobility indicators: The same as the selected features of 

mobility indicators for crowds.
• Location: Count and sort the number of flows the current 

user generated in visited locations from large to small; select 
the top five locations for the user.

• Travel pattern: The top five travel patterns between selected 
locations of current user. 

• Time: 144 time intervals (10 minutes for each interval) in a 
day.
After calculating the chi-squared value for mobility and 

time features of each individual (18 statistical features of 

Table 1. Forecast results for different features of crowds.

Feature set
Number of 
features

Number of correctly 
classified samples (%)

Precision TPR FPR ROC area

Trip distance distribution 14 549 (52.890) 0.522 0.529 0.525 0.502

Radius of gyration 2 836 (80.540) 0.846 0.805 0.206 0.799

Number of visited locations over time 2 890 (85.742) 0.877 0.857 0.147 0.855

Locations 100 568 (54.721) 0.424 0.547 0.487 0.530

Travel pattern 10 547 (52.698) 0.303 0.527 0.526 0.501

Time 24 548 (52.794) 0.286 0.528 0.520 0.504 

All features 152 942 (90.751) 0.918 0.908 0.092 0.908



IEEE Network • May/June 201620

mobility indicators, 5 locations, 5 travel patterns, and 144 time 
intervals, 172 features in total for every user), features with 
low score values (i.e., the normalized chi-squared value is less 
than 0.1) are removed. The rating framework is tested with the 
remaining 167 significant features from the individual point of 
view.

Evaluation: The experiment was carried out on 100 users who 
generated more flows than others in 7 days. Flows of each user 
are divided into 10 folds; nine folds of flows are used for train-
ing, and the remaining one is the test set. On average, 94.312 
percent forecast accuracy can be achieved.

Conclusion
In this article, we have proposed a mobile big-data-driv-
en rating framework to measure the relationship between 
human mobility and app usage behavior. We focus on time 
and mobility features that have impact on app usage behav-
ior from three aspects: individual mobility characteristics, 
location, and travel pattern. After processing mobile big 
data, selecting mobility features, and rating each feature, 
the significant features that are indicative of the mobility 
patterns of various users are used to verify the effective-
ness of the rating framework. Results show that, based on 
significant features of mobility and time, 90.751 and 94.312 
percent forecast accuracy are achieved by forecasting app 
usage behavior of crowds and individuals, respectively. This 
implies that a strong relationship exists between mobility and 
app usage behavior. The proposed rating framework is very 
useful to discover mobility features that have strong influence 
on app usage behavior, which can also be used to forecast 
app usage behavior of crowds and individuals. In the future, 
more applications will be studied through using the larger 
dataset. Specifically, a new model is expected to be proposed 
to predict individual app usage behavior based on our rating 
framework. 
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