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Abstract—Due to the pervasiveness of mobile devices, a vast
amount of geolocated data is generated, which allows us to gain
deep insight into human behavior. Among other data sources, the
analysis of data traffic from mobile Internet enables the study of
mobile subscribers’ movements over long time periods at large
scales, which is paramount to research over a wide range of dis-
ciplines, e.g., sociology, transportation, epidemiology, networking,
etc. However, to efficiently analyze the massive data traffic from
the view of user mobility, several technical challenges have to be
tackled before releasing the full potential of such data sources,
including data collection, trajectory construction, data noise re-
moving, data storage, and methods for analyzing user mobility.
This paper introduces a mobility analytical framework for big
mobile data, based on real data traffic collected from second-,
third- and fourth-generation networks, which covered nearly 7
million people. To construct a user’s history trajectories, we apply
different rules to extract users’ locations from different data
sources and reduce oscillations between the cell towers. The com-
parison of mobility characteristics between our mobile data and
other existing data sources shows the large potential of mobile
Internet data traffic to study human mobility. In addition, our
experiments discover the changing of city hotspots, the movement
patterns during peak hours, and people with similar history tra-
jectories, which uncover the common rules that exist among huge
populations in a city.

Index Terms—Big mobile data, human mobility, mobile inter-
net, mobility analytical framework.

I. INTRODUCTION

THE STUDY of human mobility can yield insight into a
variety of social issues on geographical scales, such as

urban planning [1], population distribution [2], and the spread of
disease [3]. As we know from our daily lives, the movement
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of people in space is far from random. However, finding the
formulation of quantitative laws explaining human mobility,
which is essential to uncover the mechanisms governing human
activities [4]–[9], still remains as an open question. There are
essentially two ways for studying the nature of mobility: syn-
thetic models and traces. Synthetic models attempt to represent
the human behaviors by sets of mathematical equations, such
as random mobility models (Lévy walk [10], random walk
[11]), models with temporal dependence (Gauss–Markov [12],
smooth random [13]), models with spatial dependence (proba-
bilistic random walk [14]), models with geographic restriction
(pathway or city section [15], obstacle [16]), and so on[17]–[19].
The aforementioned models are tractable, scalable, easy to
deploy, and particularly useful in the field of ad hoc networks
if traces have yet to be created [20]–[23]. Although synthetic
models can easily reproduce human mobility patterns up to an
acceptable degree of accuracy, it is still quite difficult to assess
to what extent they map reality, and the generated trajectories
are different from those observed in real scenarios [24]. On the
other side, real human traces that provide accurate information,
which traditionally are restricted by expensive data-collection
methods, are of theoretical and practical significance in the area
of mobility analytics.

Nowadays, smart devices bring us the ubiquitous mobile
Internet access. People’s movements could be sensed and easily
collected by mobile phone, generating large volumes of mobil-
ity data, such as call detail records (CDRs), and global position-
ing system (GPS) tracks. CDRs provide the time that a phone
placed a voice call or received a text message, as well as the
identity of the cell tower with which the phone was associated
at the time [6], [8], [25]–[27]. However, they are sparse in time
and coarse in space, which limits the scope of their application
to study human mobility. As for GPS tracks, the movements
of individuals in latitude and longitude along with time stamps
are recorded [28]. However, GPS signals may easily become
unavailable in indoor or underground environments, GPS de-
vices may get interferences in environments with high building
density, and users are becoming more reluctant to share loca-
tions because continuously collecting GPS data may consume
devices’ energy quickly or make people uncomfortable, consid-
ering privacy issues [29]. Due to the aforementioned matters,
up to now, there does not exist any GPS data source covering
citywide population.

Recently, researchers havefound that data traffic from second-,
third-, and fourth-generation (2G/3G/4G) data networks is ex-
tremely useful for studying human dynamics [30]–[32]. Pas-
sively collecting human movement trajectories, while he/she is
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accessing to mobile Internet, has lots of advantages: high cost
efficiency, low energy consumption, covering a wide range and
a large number of people, and with fine time granularity (people
tend to surf mobile Internet frequently while moving, and many
applications may send or receive network traffic packets period-
ically when running in the background). Collected trajectories
are coarse in space because they record locations only at the
granularity of a cellular antenna (with an average error of 175 m
[33], and the density of cell tower is much larger in urban areas
than in the suburbs or rural areas due to the human population
density). This error range is tolerable, and the analytical results
are convincing enough to find fundamental laws in human
dynamics [6], [34], to build individual mobility models [35] or
aggregated mobility models [7], even enough to get a dynamic
understanding of the population, activities, and environment
[36]–[41].

According to the prediction in [42], monthly global mobile
data traffic reached 2.5 exabytes at the end of 2014, and this
will surpass 24.3 exabytes by 2019. The explosion in data traffic
amount brings many opportunities to obtain data sources with
rich information. However, existing methods are not prepared
to deal with such huge volume of traffic data. New methods to
solve great challenge for data collection, storage, and analysis
of big mobile data are needed urgently. As motivated by such
observation, in this paper, our goal is to present a framework
for efficiently analyzing massive data traffic from the view of
user mobility in densely populated areas. The contributions of
our work are summarized as follows.

• To the best of our knowledge, we are the first to present a
cloud-computing-based analytical framework to analyze
big mobile data, from the view of user mobility, covering
the mobile networks of 2G/3G/4G and the scale for nearly
7 million people. Big data technologies and analytical al-
gorithms are used to store and process massive data traffic.
In particular, our framework is developed for analyzing
user mobility patterns based on real mobile Internet data
collected from 2G/3G/4G networks.

• Our framework is suitable for human trajectories con-
sisting of a series of positions of cell towers, including
CDRs. Since there is noise in raw data, different rules are
required to construct human trajectory from different data
sources. Toward this end, we define raw data processing
rules for constructing human trajectory from different in-
terfaces of 2G/3G/4G networks, and we remove data noise
by reducing the oscillation between cell towers. In addi-
tion, to ensure the effectiveness of our data set, we cal-
culate three widely accepted mobility indicators, i.e., the
trip distance distribution, the radius of gyration, and the
number of visited locations over time. Our results show
that, for the same indicator, different data sources follow
similar models but with different values of parameters.

• We further use our framework to explore human move-
ment behavior in densely populated areas. We employ
a parameter-free method to identify city hotspots from
the view of population, apply a modified version of the
Apriori algorithm to mine maximal sequential pattern,
discover similar users based on their history trajectories,

and predict users’ future movements from both tempo-
ral and spatial perspectives. These functionalities are of
significant meaning for improving the user experience
of location-based service (LBS), for optimizing network
resources, and for advising city planning.

The remainder of this paper is organized as follows. In
Section II, related works in the field of mobility analytics
are introduced. Section III provides the overall structure of
our mobility analytical framework, including data-collection
methods for 2G/3G/4G networks, rules for constructing human
trajectories, the design of database, and algorithms for mobil-
ity analysis. Section IV gives experimental results from our
framework based on real data traffic. Conclusions are drawn in
Section V.

II. AVAILABLE WORKS RELATED TO MOBILITY

ANALYTICAL FRAMEWORKS

To study the inherent properties of human mobility in an ef-
ficient way, a mobility analytical framework, aiming to analyze
big mobile data by providing data collection, data storage, data
preprocessing function, and mobility functionalities, is essen-
tial. Mobility Profiler [38] is a complete framework for discov-
ering mobility profiles from raw cell tower connection data. It
removes the cell tower oscillation, and constructs a cell tower
topology to discover a user’s movement pattern. The framework
“Jyotish” [43] constructs a predictive model by exploiting the
regularity of people movement found in real joint WiFi/
Bluetooth traces. With the rising of social–location–mobile
(SoLoMo), based on big data platforms of IBM, Cao et al.
presented a unified SoLoMo analysis approach from a system-
oriented view [44], which is designed to process the vast
amount of data generated in the telecommunications area every
day. Zhang [30] proposed a systematic analysis methodol-
ogy that considered inaccuracy from cellular data networks.
Although the aforementioned frameworks have solved some
issues regarding mobility analytics, none of them covered the
whole procedure for data traffic analysis (i.e., data collection,
data storage, noise removing, trajectory construction, and data
analysis from the view of user mobility), considered the meth-
ods for big data storage and analysis, or gave detailed experi-
ments with real-world data traffic collected from citywide areas.

With the rising of mobile Internet, research institutions and
enterprises pay more and more attention to LBS and try to apply
their mobility analytical frameworks to practical applications.
IBM developerWorks introduces an Advanced Analysis Plat-
form (AAP) for analyzing location to discover mobility pattern.
They want to apply AAP to all kinds of location data, such
as GPS data from cars, planes, or other equipment; the use
of credit cards or public transportation cards; CDR; and deep
packet inspection from operators. Microsoft Research devel-
oped “GeoLife” [45] to analyze GPS trajectory and provide
location-based social-networking service. GeoLife is based on
a framework, i.e., hierarchical-graph-based similarity measure-
ment, to uniformly model each individual’s location history
and effectively measure the similarity among people. Different
data sources usually have different features that require distinct
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Fig. 1. Architecture of the mobility analytical framework.

analysis methods. For example, GPS trajectory is usually gen-
erated with occasional outliers or some noisy points caused
by the poor signal of location positioning systems [46]. Raw
cell tower connection data usually have “cell tower oscillation,”
where, even when the user is static, he/she may be assigned to
a number of neighboring cell towers because of load-balancing
issues or changes in the ambient radio-frequency environment
[38]. Hence, for different kinds of spatial trajectories, specific
rules must be considered.

Different from the previous work, this paper aims at develop-
ing a framework for user mobility analytics based on massive
mobile Internet data traffic, which integrates 1) the techniques
for big data collection, storage, and preprocessing; 2) the rules
for extracting location data and for constructing people trajec-
tories; 3) the methods for solving data noise (i.e., cell tower
oscillation); and 4) the algorithms for discovering common
mobility patterns in densely populated areas. The real mobile
Internet data traffic collected from 2G/3G/4G networks cov-
ering millions of people is used to verify the effectiveness of
our framework. Our framework could be applied to analyzing
human mobility with mobile Internet data traffic, and it is
particularly useful for efficiently processing big mobile data.

III. METHODOLOGY

Here, we introduce a mobility analytical framework to an-
alyze massive data traffic from mobile Internet. As shown in
Fig. 1, we have two kinds of data sources, i.e., flow records
and packets. Here, we define “flow” as the bidirectional data
transmission at the usual 5-tuple source Internet protocol (IP),
destination IP, source port, destination port, and transport pro-
tocol within a certain period of 64 s. Our framework is based on
the cloud computing platform, which is the best tool to handle
big data at present. It consists of a trajectory builder (removing
data noise and extracting user history movements from cell
tower ID sequence), a database (storing users’ trajectories and
cell tower property), and functionalities (mobility analytics
based on users’ trajectories).

A. Data Collection

By deploying our self-developed traffic monitoring system
(TMS) at the core network edge connecting to the 2G/3G/4G

Fig. 2. Mobile Internet network architecture and the deployment of TMS.

network interfaces, data traffic generated by user equipment
(UE), such as smartphones, tablets, laptop computers equipped
with mobile broadband adapter, or any other devices that access
to the Internet through 2G/3G/4G networks, is collected. As
shown in Fig. 2, in 2G or 3G networks, a UE communicates
with a base transceiver station (BTS) or Node B, which trans-
mits its network traffic to a base station controller (BSC) or
radio network controller (RNC). The controllers (BSC/RNC)
then deliver the network traffic to a serving GPRS support node
(SGSN) that establishes a tunnel on Gn interface (interface be-
tween the GGSN and the SGSN) with a gateway GPRS support
node (GGSN) through which the data enters the Internet (GPRS
represents “General Packet Radio Service”). In 4G networks,
evolved Node B (eNodeB) establishes the connection between
UE and mobility management entity (MME). Users’ data traffic
goes into the Internet through the Serving GateWay (S-GW)
and Packet Data Network (PDN) GateWay (P-GW).

In 2G/3G networks, we collect mobile Internet traffic from
Gn interface and store the data traffic as flow records. To get
people’s location information from 4G networks, we collect
Long-Term Evolution (LTE) control-plane packets between
eNodeBs and MME, which contain the whole signaling pro-
cedures, such as connection establishment, release procedure,
or handover procedure. We can get a sequence of time-stamped
records, each of which contains the current service eNodeB ID,
signaling procedure code, user ID, etc.

As network applications become increasingly complex and
heterogeneous, there is an increasing need for application-
oriented traffic analysis. Most of the existing network TMSs
only equip physical probes to capture and store raw packets
because software-based traffic monitoring techniques are in-
adequate to achieve real-time monitoring. However, the TMS,
which is based on a combined software/hardware architecture
with flexibility to cope with the modification and addition
of monitoring requirements, as well as future rate increase,
can conduct application-oriented traffic analysis for a 10-Gb/s
network line in real time using an eight-core machine [47].

B. Big Mobile Data Processing Platform

To store and process the massive data collected from a big
city covering large population, a cloud-computing-based big
mobile data platform with high storage capacity and computing
power is essential. The mobility analytical framework is built on a



1446 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 2, FEBRUARY 2017

Fig. 3. System architecture of the big mobile data processing platform.

cloud computing platform based on Hadoop (an open-source
software for reliable, scalable, and distributed computing)
[48], which provides functions of data transmission, storage,
processing, and management [47]. The system architecture of
our platform is shown in Fig. 3.

1) Transmission Module: The data traffic collected by the
TMS is uploaded to the cloud computing platform through
a transmission module, which provides real-time and stable
transmission by using Flume [49] and Kafka [50].

2) Storage Module: Hadoop Distributed File System (HDFS)
[51] and HBase [52] are used to store massive data traffic in the
form of flow records, or packets. All files in the platform are
replicated for fault tolerance. The storage space of the platform
can be easily extended by adding disks or new machines.

3) Processing Module: We use MapReduce [53], Spark [54],
and Storm [55] to process the massive data traffic. MapReduce
is a programming model and an associated implementation for
processing and generating large data sets. Spark supports cyclic
data flow and in-memory computing, which is very efficient for
iterative and matrix computation. Storm is very useful to deal
with real-time analysis.

4) Management Module: To monitor the whole platform, we
developed a management module to monitor the status of all
machines, equipment, software, and modules. All monitoring
data are collected by Flume and stored in a database. If the value
of a monitoring item is over a set threshold, specific alarm infor-
mation is sent to the administrator via a short message, an
e-mail, and a web interface, immediately. In addition, we use
ZooKeeper [56], to modify the configuration parameters of each
machine and equipment (i.e., enabling/disabling the machines,
equipment, software on machines, and modules of each soft-
ware), and change the value of alarm threshold.

C. Trajectory Builder

To construct a user’s history trajectories, some rules should
be applied, while extracting the user’s location from data traffic.
Meanwhile, data noise must be removed before analyzing data.

1) Extracting History Movements: We extract a user’s trajec-
tories by 4-tuple {user ID, cell tower ID, time stamp, duration}.

Fig. 4. CDF of flow durations for data traffic collected from 2G/3G networks.

A trajectory is constructed by a sequence of stays, and a stay is
defined as

S = (U,L, T,D)

where U is the user ID; L is the cell tower ID; T is the start
time of this stay, which is stored in Coordinated Universal Time
(UTC); and D is the duration in seconds that a user accesses
with a cell tower. Here, we have the user’s trajectory as

Traj = 〈S1, S2, . . . , Sn〉

where Sk = (U,Lk, Tk, Dk), 1 � k � n.
For different data sources (flow records or packets), we apply

different rules to construct the user’s trajectories.
(a) Flow records as data source: For flow records, each

flow will generate a stay, T is the start time of a flow, and D is
the duration of that flow. Note that one flow only records the cell
tower that a user accessed to when the flow started. If the user
switches to another cell tower before the current flow ends, this
transition could not be captured. To examine this deviation, we
further draw cumulative distribution functions (CDFs) of flow
duration of 2G/3G traffic data, i.e., we draw the value of flow
duration on the x-axis and the cumulative percentage of each
observed flow duration value on the y-axis. We can clearly ob-
serve in Fig. 4 that over 80% of flows last less than 6 s, and the
duration of 90% of flows is less than 10 s. Since crossing over
the coverage of a cell tower within 6 s is nearly impossible, we
believe our data set can capture a user’s movements perfectly.
Note that, for those who move around the border area of a cell
tower, we may not capture their next location correctly, if he/she
switches the cell tower in 6 s.

Since the changing of users’ locations is not recorded in
flows, to reduce the deviation, we use two rules to construct
a user’s trajectories.

Rule 1 (merging overlapping flows with same location):
If Lk = Lk+1 and Tk+1 < Tk +Dk < Tk+1 +Dk+1, remove
Sa_k+1; we have Sa_k = (Ua, Lk, Tk, Tk+1 − Tk +Dk+1).

If user a generates two flows at the same cell tower and the
second flow starts before the first flow ends, two stays extracted
from these two flows should be merged into one stay.

Rule 2 (identifying transitions from overlapping flows with
different locations): If Lk �= Lk+1 and Tk+1 < Tk +Dk, then
Sa_k = (Ua, Lk, Tk, Tk+1 − Tk), Sa_k+1 = (Ua, Lk+1,
Tk+1, Dk+1).
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Fig. 5. Example of cell towers in mobile Internet.

If user a generates two continuous flows at different cell
towers and the second flow starts before the first flow ends, the
stay extracted from the first flow should end when the second
flow starts.

(b) Packets as data source: When a UE connects to
LTE network, it will be either in active state or in idle state.
For different states, we apply two rules to construct the UE’s
trajectories.

In active state, LTE networks are aware of the ID of cell
tower to which the UE is currently connected. Every time the
UE switches to a cell tower, a stay is generated. For one user,
there is no time interval between consecutive stays, and all
movements (cell tower switching) can be captured.

Rule 3 (identifying transitions when a UE is in active state in
4G networks): In active state, for two stays generated by user a,
if Tk and Tk+1 are the time that the UE attaches to cell tower
Lk and Lk+1, respectively, we have Tk +Dk = Tk+1.

While in idle state, the UE shall initiate the tracking area
updating procedure by sending a tracking area update (TAU)
request every 12 min (periodic tracking area updating is used to
periodically notify the availability of the UE to the network).

Rule 4 (identifying transitions when a UE is in idle state in
4G networks): In idle state, for each user, we have a stay Sk =
(U,Lk, Tk, 0) for every 12 min, and movements between each
TAU is lost.

2) Reducing Oscillation: Mobile phone may switch between
different cells even when a user is not mobile. It usually hap-
pens when a user is in the overlapping area of two or more cells.
This phenomenon is called “cell oscillation” or “ping-pong
effect.” For example, as shown in Fig. 5, if the user’s real
movement is A → B → C, when oscillations happened, the
trajectory extracted from data traffic would be A → B → D →
B → D → B → C (this kind of oscillations is easy to identify)
or A → B → D → C (this kind of oscillations is very hard to
identify).

Some studies handle the oscillation problem by clustering
cell towers, which will reduce the position accuracy [38], [57].
A recent study has proposed an algorithm framework called
DECRE (Detect, Expand, Check, Remove) [58], which resolves
oscillation by selecting a cell tower to approximate the mobile
device’s actual location.

To reduce the oscillations effectively under a big mobile
data environment, we only consider two features of cell tower
oscillation: 1) It happens between adjacent cells; 2) the duration
for oscillations is quite short (if the duration between switching
is long, we cannot tell whether it is an oscillation or a real
movement). Hence, we apply a simple method to handle the
oscillation problem.

Rule 5 (reducing oscillations): Calculate the average dis-
placement (switching) time dt for the given data set. If a user
changes location during dt, oscillations may happen. Replace
the locations that the user connects to during dt with the one
that has the longest accessing time during dt.

Because we only capture the user’s movements when his/her
smartphone generates data traffic, we only take consecutive
stays, between which there is no time interval, into account
when calculating the average displacement time.

D. Data Storage

After removing data noise, we design two tables to store the
data of users’ movement trajectories and information of cell
towers.

1) Table 1 (User Trajectories): We store users’ trajectories
as 4-tuple {user ID, cell tower ID, time stamp, duration}, to
draw a user’s history movements from spatial and temporal
dimensions.

2) Table 2 (Cell Tower Property): For each cell tower, we
store cell tower’s property as 6-tuple {cell tower ID, network
type, longitude, latitude, a list of adjacent cell towers, a list
of semantic location tags}. Network type includes 2G/3G/4G
networks; longitude and latitude are the geographical location
of cell tower. Semantic location tag is the regional characteristic
of cell tower (such as “xx shopping mall” and “xx station”),
and this usually includes the name of station, commercial/
residential area, educational/industrial/government building,
etc. A cell tower may have many semantic location tags.

Table 1 stores the most basic information of a user’s trajec-
tory, which could be used to analyze mobility pattern, to dis-
cover similar users, or to predict the user’s next location. After
combining data in Tables 1 and 2, advanced semantic informa-
tion can be illustrated. We could predict the user’s future move-
ment in a spatiotemporal scene and discover the most popular/
hot/crowded place in a city.

E. Functionalities

Here, we introduce the methods used by four mobility func-
tionalities, including identifying city hotspots, discovering mo-
bility pattern, finding similar users based on history movement
path, and predicting user’s future movements.

1) Identifying City Hotspots: By collecting the mobile Inter-
net data traffic generated by users, we could have a glance at
the structure and dynamics properties of a city. In particular, it
is very important to identify the “heart” of the city, which is also
called “city hotspot.” If there are some abnormal changes of city
hotspots, it may imply that unexpected events are happening or
a big event will happen soon.
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Fig. 6. Criteria selection on the Lorenz curve. The threshold corresponds to the
value of 1 − P ∗.

City hotspots, i.e., the most significant locations along the
human’s trajectories, are made of the geographical area covered
by one or many cell towers. Depending on the properties that we
want to focus on, many different kinds of city hotspots could be
identified. Previous work identified city hotspots in the view of
density of population [36], subscribers’ mobile data [37], the
residence time [59], and semantic location [46]. The aforemen-
tioned properties are characterized by a specified parameter. If
the parameter value of a place is bigger than a threshold, the
place could be identified as a city hotspot. Therefore, identi-
fying hotspots is an issue of exploring an efficient threshold
for a specified parameter. We employ a parameter-free method
proposed by Louail [36] to select the threshold. The employed
method is based on the Lorenz curve.

For a specified time period, we can obtain the value of an
indicator r(j), such as population (number of users), from can-
didate hotspots. Here, j is the sequence number of a candidate
hotspot. We sort candidate hotspots in an increasing order and
then denote them by r(1) < r(2) < · · · < r(n), where n is the
total number of locations. The Lorenz curve is constructed in
the following way:

• On the x-axis, draw the proportion of candidate hotspots
P = j/n, where j = 1, 2, . . . , n.

• On the y-axis, plot the corresponding proportion of the
number of users with

L(j) =

∑j
i=1 r(i)∑n
i=1 r(i)

. (1)

The method employs the natural way to identify the typical
scale of the number of hotspots, which is to take the intersection
point P ∗ between the tangent of L(P ) at point P = 1 and the
horizontal axis L = 0 (see Fig. 6). Then, the method gives
1 − P ∗ as the threshold for identifying the hotspots. This
method is inspired from the classic scale determination for an
exponential decay: if the decay from F = 1 is an exponential
of the form e(F−1)/a, where a is the typical scale that we want
to extract, this method would give 1 − F ∗ = a.

2) Discovering Mobility Pattern: In the view of 2G/3G/4G
networks, users’ history movements are made of a se-
ries of stays, i.e., Traj = 〈S1, S2, . . . , Sn〉, where Sk =
(U,Lk, Tk, Dk), 1 � k � n. Discovering the mobility pattern
of individuals or groups is the matter of finding a maximal con-
tinuous trajectory. Therefore, we apply a modified version of
the Apriori algorithm to discover maximal sequential pattern. A
mobility pattern is identified only if the support value of discov-
ered maximal continuous trajectory is larger than the support

TABLE I
NOTATION DESCRIPTION OF MODIFIED APRIORI ALGORITHM

threshold [60]. In our case, for a set of trajectories Traj_S =
{Traj1, T raj2, . . . , T rajN}, the support value of pattern p is
the ratio of the number of pattern p that appeared in trajectories
to the number of trajectories, which is defined as

supp(p) =
|{Traji|p ⊂ Traji and 1 � i � N}|

N
. (2)

For example, if a Traj_S contains 10 trajectories and 6
trajectories contain the mobility pattern p, supp(p) equals 0.6.
Given a minimum support threshold δ, the mobility pattern p is
defined as a mobility pattern if and only if p has a support value
satisfying supp(p) � δ.

In this paper, we discover the mobility pattern only between
city hotspots. The main notations used in our method are listed
in Table I, and the pseudocode of our algorithm is shown in
Algorithm 1. A mobility pattern p = 〈a1, a2, . . . , an〉 is a can-
didate mobility pattern only if its subpattern q = 〈a1, a2, . . . ,
an−1〉 is discovered as a mobility pattern. For example, if q =
〈a, b, c〉 is a mobility pattern, p = 〈a, b, c, d〉 is a candidate
mobility pattern. The main idea of this algorithm is discovering
a continuous trajectory, the support value of which is larger
than δ. We first calculate each hotspot’s support value, and
the set of length(1) mobility patterns are generated. Then, the
mobility patterns with length(k) are generated through mobility
patterns with length(k − 1). The iteration is ended when the set
of length(k) is ∅.

Algorithm 1 Discovering Mobility Patterns

INPUT: Support threshold δ
Set of mobility trajectories T
Set of hotspots H

OUTPUT: Set of mobility patterns P
1: k = 1
2: Ck = {h|h ∈ H}
3: Pk = {h|h ∈ H ∧ supp(h) > δ}
4: P = {}
5: repeat
6: k = k + 1
7: for all mobility pattern pk−1 ∈ Pk−1 do
8: for all frequent pattern p1 ∈ P1 do
9: Ck = {ck|ck = pk−1 ∪ p1}

10: end for
11: end for
12: for all trajectory Traj_s ∈ Traj_S do
13: Ct = subset(Ck, T raj_s)
14: for all candidate c ∈ Ct do
15: count(c) = count(c) + 1
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16: end for
17: end for
18: Pk = {c|c ∈ Ck ∧ supp(c) > δ}
19: P = ∪Pk

20: until Pk = ∅

21: return P

3) Finding Similar Users Based on Path: The history move-
ments of users may reflect their relationship. If two different
users have similar moving path every day, they may know each
other or have the potential to be friends. The more unpopular
locations (the locations that people seldom visit) that they
visit at the same time interval, the more likely that they share
similar interests. In [61], user similarity is mined, based on GPS
data collected from mobile phones, to recommend friends or
discover a community. According to the features of our data
set, users’ trajectories are extracted even when users are in a big
shopping mall or subway (GPS signal is not available in indoor
places, underground, and the area of intensive buildings), which
ensure that users’ daily movements in urban areas are captured.

First, we apply the improved Apriori algorithm to find the
maximum similar sequence (MSS) from two users’ moving
paths (path1 and path2).

Second, we calculate the“Inverse Document Frequency (IDF)”
[62] for all the locations

idf(s) = log
N

n
(3)

where N is the total number of users in the data set, and n is the
number of users visiting locations s. That is to say, if a lot of
people visit location s, the value of idf(s) will be very small.

Third, the IDF of the ith MSS for two paths are calculated as

IDF (MSSi) = 2|MSSi |−1 ×
|MSSi |∑
i=1

idf(si). (4)

Here, |MSSi| refers to the number of locations in the ith MSS.
Finally, we have the “Similar Score” for two paths as follows:

SimScore(path1, path2) =

∑m
j=1 IDF (MSSj)

|path1| × |path2|
(5)

wherem is the number ofMSS for path1 and path2, and |path1|
is the number of distinct locations in path1 [61].

Based on the different time intervals in a day that we focus
on, an existing or potential relationship would be found. For ex-
ample, paths of colleagues or family members tend to have high
Similar Score during work time or night, respectively. If two
paths collected from two different phone numbers have very
high Similar Score during weeks, we may assume that these two
phone numbers belong to the same person.

4) Predicting User’s Future Location: Predicting users’ fu-
ture positions allows us to be ready for their movement and
to react in advance. To identify user groups according to their
temporal and spatial characteristics, we discretize a day into
24 time segments, i.e., each segment lasts an hour long, as
shown in Table II.

TABLE II
TIME SEGMENT OF THE CORRESPONDING TIME INTERVAL

We use entropy to measure the activity of users and capture
the degree of predictability, which is defined as follows:

H(X) =
n∑

i=1

(p(xi)I(xi)) = −
n∑

i=1

p(xi) log
p(xi)
b (6)

where n is the number of different locations that a user visited
in one time segment, i represents the location index that the
user visited, and b equals to 2. p(xi) is the probability of a user
staying in a certain place in one time segment. The bigger the
entropy value, the more locations that the user visits in the cur-
rent time segment. For each user, we build two entropy vectors:
the entropy value for each segment in weekdays and on week-
ends, respectively, i.e.,

Eweekday = [eweekday/segment0, . . . , eweekday/segment23]
Eweekend = [eweekend/segment0, . . . , eweekend/segment23].

Considering the correlation between location and time, we
group users into two groups (group 1 and group 2) with distinct
mobility patterns by clustering them with k-means clustering.

(a) Group 1: Users who have regular repeated patterns of
movements: For those who visit very limited locations every
day and follow regular pattern in different days, such as white
collar workers who usually go to work around 8:00 A.M. and go
home around 6:00 P.M., as shown in Fig. 7, we apply “Intelli-
gent Time Divisions (ITD)” [63] to predict not only their future
movement but also the time that they may arrive. The method
ITD takes spatial probability distribution as a significant char-
acteristic to predict a user’s future mobility pattern. The spatial
probability distribution of a user shows the probability that a
user is at a specific point in the space and is defined as

P (X,Y ) = prob(x = X, y = Y )

where (x, y) represents the location of a user. If we take time
factor into consideration, we can define the spatial probability
distribution as

Pt(X,Y ) = prob (x(t) = X & y(t) = Y ) .

If we can get a user’s history movements, the spatial proba-
bility distribution can be easily estimated.

(b) Group 2: Users who move randomly: For those who
spend much time moving around the city every day, such as
postmen and taxi drivers, as shown in Fig. 8, we use a time-
based Markov predictor to predict their next location. Although
they travel relative randomly in the city, still, some patterns
may be discovered due to personal habits, traffic conditions, and
road planning in the city. For users in group 2, we predict not
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Fig. 7. Spatial probability distribution of a user with regular pattern of movements for workdays. The user basically stays in one place (probably his/her working
place) during working hours and stays in another place (probably his/her home) during non-working hours. (a) Working hours. (b) Non-working hours.

Fig. 8. Spatial probability distribution of a user who moves randomly on workdays. The user moves among many places during working or non-working hours.
(a) Working hours. (b) Non-working hours.

only the user’s next location but the time interval that he/she
stays in this location as well.

For a trajectory Traj = 〈S1, S2, . . . , Sn〉, to predict the
next location Ln+1, we find all Sk = (U,Lk, Tk, Dk), 1 <
k < n, satisfying Lk = Ln, and getHours(Tn)− Tinter <
getHours(Tk) < getHours(Tn) + Tinter. Here, the value of
Tinter depends on the length of the time interval that we predict
that he/she may stay at the next location, and getHours(T )
equals to current time (24-h format), since T is the start time
of stay S, which is stored as UTC time. Finally, the location
Lk+1 that meets the aforementioned conditions and appears
most frequently is the predicted next location. For example,
a user just passes cell tower A at 9:00 A.M., and we want to
know his/her next location, if we have Tinter = 1, we find all
the cell tower A that the user passed by during 8:00 (an hour
before 9:00) and 10:00 (an hour after 9:00) in his/her history
trajectories. Then, the next cell tower that the user connected to
after cell tower A with the highest probability of occurrence in
his/her history trajectories is the prediction result.

IV. USER MOBILITY BEHAVIOR

To test the effectiveness of the framework, we collected two
data sets from real mobile Internet to do the experiments. In this
part, first, we illustrate the basic characteristics of our data sets.
Second, three human mobility indicators are calculated to show
the mobility feature of our data sets. Then, the experimental
results of mobility functionalities are introduced.

A. Data Set

We collected 2G/3G/4G data traffic from real mobile Inter-
net, as shown in Table III. The 2G/3G data traffic is extracted
as flow records from July 25 to 31, 2015, which covers nearly
seven million people of a big northern city in China. The 4G
data traffic is the control-plane packets from October 10 to 31,
2013, with over 3000 people in a big city in southern China.

In our experiments, we use 2G/3G data traffic, which covers
nearly seven million people but lasts only seven days, to study
the mobility features of large-scale human mobility, and detect
the hotspots with large population in the city. The 4G data
traffic, which captures the trajectories of thousands of people
in 21 days, is more suitable to discover the mobility patterns,
to find similar users based on path, and to predict user’s future
movements.

B. Mobility Features

Nowadays, large-scale human mobility is described by three
widely accepted indicators: the trip distance distribution p(r),
the radius of gyration rg(t), and the number of visited locations
over time S(t) [64]. These three measures contain the basic
ingredients to describe the individual trajectories, in which
frequent travels occur among a limited number of places, with
less frequent trips to new places outside each individual radius.

1) Trip Distance Distribution p(r): The trip distance dis-
tribution p(r) quantifies the relative probability of finding a
displacement of length r in a short time. By analyzing the
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TABLE III
CHARACTERISTICS OF DATA SOURCES

Fig. 9. Trip distance distribution p(r).

Fig. 10. p(rg) distribution of the radius of gyration rg for users.

circulation of bank notes in the United States, a previous study
[4] found that the distribution of p(r) decays as a power law,
i.e., p(r) ∼ r−β with β ≈ 1.59. In our case, as shown in Fig. 9,
p(r) follows power law with β ≈ 2.462, which implies that
the proportion of large trip distance of bank note trajectories
is bigger than our data sources. It is because the data source
in [4] covers the nationwide area (United States), but our data
sources covers a tier-2 city in China.

2) Radius of Gyration rg: The rg reveals how extensively
users move rather than capture the practical distance. Visiting
the same sequence of locations in a circle continuously does not
increase the value of radius of gyration, whereas a straight-line
movement does [6]. rg is defined as follows:

rg =

√√√√ 1
n

n∑
i=1

(�rl − �rcm)2 (7)

where �rl is as ith location in a user’s history trajectories,
i = (1, 2, . . . , n), and �rcm = (1/n)

∑n
i=1 �rl is the center of a

trajectory. As shown in Fig. 10, the distribution of p(rg) for
users in seven days follows power law p(rg) ∼ r−β

g with β ≈
1.514. In [35], power law is observed with β ≈ 1.55 for CDRs

Fig. 11. Number of visited distinct locations S(t) versus time.

of 3 million users in one year. It implies that the movement
range of mobile phone users in [35] is smaller than that of users
in our data traffic collected from 2G/3G networks. A reasonable
guess is that the geographical scope covered by our data set
(about 53 840 km2) is bigger than that covered by the data set
in [35].

3) Number of Visited Distinct Locations Over Time S(t):
The number of visited distinct locations over time describes
how frequently a user visits new places, which is expected to
follow S(t) ∼ tμ (see Fig. 11). μ < 1 indicates a slowdown at
large-time cases, which implies a decreasing tendency of the
user to visit previously unvisited locations. In our case, S(t)
grows as tμ with μ = 0.807.

In summary, the aforementioned results show that, for the same
indicator, different data sources follow similar models with
different values of parameters. We can conclude that human
trajectories extracting from cell towers accessing records are
able to capture the basic characteristics of human movements.

C. Hotspot Detection

In this part, we will identify the hotspots from the view
of population. Intuitively, the population at a place is directly
proportional to the importance that is attributed to it by the
users. Places with large population, such as a big shopping mall,
a residential area, a traffic hub, or the places for group activities,
have significance for the city. However, hotspots always change
with time, which shows the movements of population in differ-
ent regions in the city, as shown in Fig. 12. We detect hotspots
for each hour in one day. Over 24.4% of hotspots appear once
in a day, and only 7.5% of hotspots last more than 12 hours (like
24-hour eating areas, traffic hubs, and universities).

D. Mobility Pattern of Individuals and Groups

Understanding the mobility pattern of groups in the city
reveals the population stream among specific locations at a
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Fig. 12. Duration distribution of hotspots in one day.

TABLE IV
TOP FIVE MOBILITY PATTERNS OF GROUPS IN THE CITY

Fig. 13. Probability of the occurrences of patterns for groups varies with time.

specified time, which has important practical applications to
making better urban planning, such as set new bus or subway
routes and increase cell towers in a more efficient way. Among
all the mobility patterns for groups that we evaluated, five
patterns are most common in the city, as shown in Table IV.

In our experiments, the support threshold is set to 0.01 to
make sure that the average mobility pattern length achieves the
longest. The most frequent patterns are a roundtrip between a
transportation hub and a residential area. It implies that there
are a lot of people living in this residential area and that they
usually go to a transportation hub when they need to travel in
the city. As shown in Fig. 13, all patterns in Table IV start to
occur at 4:00 A.M. Most of them happen between 6:00 A.M. and
9:00 A.M. in the morning, or between 3:00 P.M. and 7:00 P.M.
in the afternoon. It indicates that some popular patterns appear
during commuting time in the city.

In addition, finding individual mobility patterns provides
important information about personal habit and interest, which
is of practical significance for a service provider (SP), particu-

TABLE V
TOP FOUR MOBILITY PATTERNS OF USER x IN THE CITY

Fig. 14. Probability of the occurrence of patterns for user x varies with time.

Fig. 15. Semantic path of two sampled users.

larly for location-based SP. We apply the same algorithm to a
sampled user x and discover his/her daily patterns, as shown in
Table V. The support threshold is set to 0.5, which means that
supported patterns emerge at least 10 days over 21 days.

As shown in Fig. 14, pattern 1 happened around 5:00 A.M.
for most of the time, and pattern 4 usually happened between
7:00 P.M. and 8:00 P.M. Apparently, pattern 1 and pattern 4 are
commute routes for user x. In addition, the century mansion
and information mansion (the office building) may be his/her
workplaces, and the residential area is his/her home.

E. Relationship Among Users

A user’s history trajectories uncover his/her daily interests
and living habits. For example, sports fans tend to visit the gym
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TABLE VI
ACCURACY OF PREDICTION ALGORITHMS FOR APPLYING DIFFERENT ALGORITHMS TO GROUPS WITH DISTINCT MOBILITY PATTERN

and stadium more often, and fashion girls like going shopping
during leisure time. The similarity of historical moving path
among users draws a potential or existed relationship. The more
the users come to places that other users seldom visit, the closer
they tend to be. It brings new strategy for SPs to find target users
and even helps authorities to locate suspicious people who may
have close relationship with target persons.

By applying the method in Section III (Finding Similar Users
Based on Path), the Similar Score value of every two users is
calculated. Fig. 15 shows the semantic path of two sampled
users that get 0.87 normalized Similar Score during a period of
time in the weekend. User A and user B came to a stadium from
two different places (probably their home). After a while, they
went to the same shopping mall. Then, user B visited a filling
station and appeared in a park where A had already arrived.
After about an hour, they returned respectively to their “home.”
We can easily conclude that user A and user B may be friends
or have same interests.

F. Mobility Prediction

By applying ITD [63], time-based Markov, and Markov to
different groups of users, we have experimental results, as
shown in Table VI. We use data traffic of 4G networks, which
captures users’ trajectories in 21 days. We select 2204 users
from our data, who generate more than 500 packets in 21 days
(if user generates very few packets, the movements extracted
from packets are not enough to do the experiments). By quanti-
fying the activity of users, we identify 795 users with regular
pattern of movements and 1409 users as randomly moving
people. For each trajectory, we use the previous n(n > 0) con-
tinuous movements to predict the n+ 1 movements. Then, the
prediction accuracy of each user is the proportion of correct pre-
dictions for his/her trajectories. The average value of prediction
accuracy of all users is the prediction results.

We predict not only a user’s next location but also the
time that he/she will arrive, and we achieve better prediction
accuracy than the benchmark (Markov algorithm), as shown in
Table VI. ITD beats time-based Markov, while predicting the
next locations for users with regular pattern of movements. For
predicting the future movements of randomly moving users,
time-based Markov achieves the highest prediction accuracy
when compared with ITD and Markov. It implies that we should
employ different prediction algorithms for distinct groups with
different movement patterns.

V. CONCLUSION

In this paper, we have proposed a framework to analyze user
mobility using big mobile data in densely populated areas. The

whole framework is based on a cloud computing platform,
which provides data collection, preprocessing, storage, and
analysis function. We further introduce the rules for construct-
ing users’ trajectories from different data sources; the methods
for reducing data noise; and the algorithms for identifying
hotspots, discovering mobility pattern of groups and individ-
uals, finding similar users based on path, and predicting user’s
future movements.

Some interesting findings have come out after the experi-
ments. First, comparing with other studies based on trajectories
extracted from bank notes, CDRs, and cellular networks, the
three indicators (i.e., the distribution of trip distance, the radius
of gyration, and the number of visited distinct locations over
time) calculated by our data sets follow similar models with
different values of parameters, which vary with the duration,
the covered area, and the population of data. It indicates that
users’ trajectories extracted from data traffic of mobile Internet
are very suitable for analyzing users’ mobility in a big city.
Second, by applying our methods, collected data traffic reveals
some interesting phenomenon in the city, such as the following:
more than half of the hotspots last less than 3 hours; a large
crowd moving between a transportation hub and a residential
area during morning and evening peak hours; users with similar
interests could be easily identified from their history trajecto-
ries. All the analysis results uncover the common rules that
exist among huge populations in a city, which are of theoretical
and practical significance for urban planning, traffic control,
mobile network resource optimization, etc. Third, people in
the city usually have distinct mobility patterns. Considering
the mobility pattern while predicting user’s future movements
could improve prediction accuracy.

In the future, we will apply the data stream algorithms and
get the real-time analysis result. In this way, we could make
some applications more practical, such as predicting and mon-
itoring large-scale events. In addition, for each mobility appli-
cation, applying the most suitable algorithm to our data set and
improving existing methods are our future work.
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