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a b s t r a c t 

Human mobility behavior is far from random, and its indicators follow non-Gaussian distributions. Pre- 

dicting human mobility has the potential to enhance location-based services, intelligent transportation 

systems, urban computing, and so forth. In this paper, we focus on improving the prediction accuracy of 

non-Gaussian mobility data by constructing a hybrid Markov-based model, which takes the non-Gaussian 

and spatio-temporal characteristics of real human mobility data into account. More specifically, we (1) 

estimate the order of the Markov chain predictor by adapting it to the length of frequent individual 

mobility patterns, instead of using a fixed order, (2) consider the time distribution of mobility patterns 

occurrences when calculating the transition probability for the next location, and (3) employ the pre- 

diction results of users with similar trajectories if the recent context has not been previously seen. We 

have conducted extensive experiments on real human trajectories collected during 21 days from 3474 in- 

dividuals in an urban Long Term Evolution (LTE) network, and the results demonstrate that the proposed 

model for non-Gaussian mobility data can help predicting people’s future movements with more than 

56% accuracy. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Analyzing the characteristics of human mobility reveals that hu-

an trajectories are predictable. They often exhibit a high degree

f temporal and spatial regularity. In order to find the basic rules

overning human dynamics and build a model to predict human

obility, various studies of human mobility have been conducted

n recent years. With the emergence of smartphones and location-

ased services, since most of location-based services require accu-

ate or approximate position of user, predicting user’s next loca-

ions shows a great potential for service providers to improve the

ser experience. In particular, it has become a critical enabler for

 wide range of applications, such as location-based advertising,

arly warning systems, and city-wide traffic planning [1] . 

Over the previous years, different methods have been proposed

n the literature, using varied types of data and aiming at predict-

ng distinct aspects of human mobility. Real traces are crucial to

rain and evaluate prediction models. Nowadays, people’s move-

ents can be easily sensed with mobile phones, which are gener-

ting large volumes of mobility data, such as Call Detail Records
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CDRs) [2,3] , Global Positioning System (GPS) tracks [4–7] , data

raffic of mobile networks [8–11] , and Wi-Fi access points data

12] . Recently, researchers found that data traffic from 2G/3G/4G

ellular networks is extremely useful for studying human dynam-

cs [8,9,11,13–17] , and can provide people’s trajectories in a large

cale. Passively collecting human movement trajectories while they

ccess the Internet with their smartphone presents many advan-

ages: high cost efficiency, low energy consumption, covering a

ide range and a large number of people. Moreover, this can be

one with a fine time granularity, as people tend to surf the Inter-

et frequently on their smartphone while commuting. Also, many

pps send or receive network traffic packets, even when running

n the background [18] . Collected datasets, despite having different

ollection methods, and covering different populations with vari-

us accuracy or time granularity, always present a similar charac-

eristic: human trajectories described by the data all follow a non-

aussian spatio-temporal distribution. [18–22] . 

Existing research works on mobility prediction are exploit-

ng diverse types of data [1] . The most commonly used algo-

ithms to predict mobility include machine learning algorithms

clustering techniques [4–6,8,9,23–25] , Bayesian models [26–30] ,

eural networks [2,31] ), state-based techniques (Markov mod-

ls [7,12,14,15,32] , LeZi family [11,13] , hidden Markov models

4,5,10,25,33] ), and pattern matching algorithms (prediction by

http://dx.doi.org/10.1016/j.neucom.2017.05.101
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Partial Matching [34,35] ). As for predicting mobility in a large pop-

ulation through the cellular network, Markov-based algorithms are

more suitable [36] and out-perform other methods when applied

to short trajectories, and when considering the temporal factor

[37] . They also prove to be very appropriate for future generation

mobile networks [38] . 

To predict the next location using large-scale non-Gaussian mo-

bility data, this paper aims to improve the prediction accuracy of

Markov-based algorithms. In order to achieve this goal, the key is

to enrich the states in the underlying Markov model by considering

relevant external information, increasing time and spatial complex-

ity. In this paper, a hybrid Markov-based prediction model, which

considers non-Gaussian and spatio-temporal characteristics of real

human mobility data while predicting, is constructed. The predic-

tion accuracy of a simple Markov algorithm on our real dataset,

can be improved from 44.02% to 56.39% in our experiments.

Overall, the contributions of this paper can be summarized as

follows: 

• We examine the characteristics of real mobility data extracted

from user’s data traffic in an LTE network, which provide prop-

erties we should consider while predicting user’s future move-

ment. The human mobility represented in the dataset shows

two main characteristics that follow a non-Gaussian distribu-

tion, namely the trip distance and the radius of gyration. This

means that (1) displacement within short distance is frequently

seen in the dataset and (2) frequent travels occur in a limited

range in individuals’ daily life. In other words, people generally

move within a bounded region and only occasionally travel long

distance. In addition, we further study the probability of finding

a user at different locations, and returning to the same location.

Analysis results show that people visit some primary locations

periodically with high probability, which confirms the intuitive

existence of mobility patterns for each user. The periodicity of

this pattern hints that temporal factors can contribute to pre-

dicting the next location of individuals. 

• We propose a hybrid Markov-based model to predict users’

future movements. It uses different methods consecutively to

discover spatio-temporal pattern of each individual’s trajectory.

More specifically, the model determines the order of Markov al-

gorithm by discovering the regular mobility patterns for each

individual, and takes into account the time of the day where lo-

cations are visited. This way, non-Gaussian and spatio-temporal

characteristics of users’ trajectories are fully considered, which

contributes a lot to getting a better prediction result. 

• Markov-based algorithms fail to correctly predict future move-

ments if the new location has never been visited by an indi-

vidual. To alleviate this issue, we consider the trajectories of

geo-friends: users sharing similar trajectories and mobility pat-

terns. We then employ a user-based recommendation method

with Collaborative Filtering to predict users’ future movements

when their own mobility pattern cannot contribute to the

prediction. 

The remainder of this paper is organized as follows. In

Section 2 , we provide a survey of the related works. Section 3 ex-

amines the non-Gaussian and spatio-temporal characteristics of

users’ trajectories extracted from our dataset. In Section 4 we de-

scribe the hybrid Markov-based mobility prediction model, before

presenting in Section 5 the methods employed in the mobility

prediction model, including the hotspot detection method, the mo-

bility pattern discovery algorithm, the variable-order Markov pre-

diction algorithm with temporal factors, and finally the algorithm

enhancement using similarity of geo-friends’ movements. The

performance of the proposed mobility prediction model is then

evaluated in Section 6 , and conclusions are drawn in Section 7 . 
. Related work 

Many datasets collected from real world applications and ser-

ices have been found to show non-Gaussian characteristics, such

s gene networks [39] , hyper-spectral images [40] , or climate

xtremes [41] , for example. As for datasets describing human

obility, despite some characteristics showing Gaussian distribu-

ions [42,43] , many other characteristics show non-Gaussian dis-

ribution [44,45] and have been studied in the literature. In par-

icular, the locations visited by people in their daily life show a

on-Gaussian distribution [19] , and predicting those locations is a

hallenging objective addressed by recent research works to enable

 wide range of applications, such as location-based advertising,

arly warning systems, and city-wide traffic planning. 

Markov models are widely used in prediction algorithms, due

o their efficiency, simplicity, and low computing costs [38] . For

xample, a Markov chain prediction model considers the sequence

f locations last visited by a user to predict the next location. The

ength k of that sequence of locations represents the order of the

arkov chain, and we refer to this model as an order- k Markov-

ased model. Markov-based prediction methods fall into one of

our categories: (1) order- k Markov-based methods that only use

he historical locations to discover individual movement patterns

7,46,47] , (2) order- k Markov-based methods that also consider ex-

ernal information in addition to historical trajectories [48–50] ,

3) hybrid Markov-based methods that are enhanced with other

rediction methods [32,51,52] , (4) evolved algorithms based on

arkov models, such as the LeZi algorithm [11,13] or algorithms

ased on Hidden Markov Models [4,5,10,25,33] . 

Over a decade ago, classical Markov models of low order

generally, 1 or 2) have already been used to predict future move-

ents [7,46,47] . It has been found that low-order Markov-based

redictors performed as well as, or better than the more complex

nd more space-consuming compression-based predictors such

s Prediction by Partial Matching (PPM), or Sampled Pattern

atching Algorithm (SPM) [46] . Markov models of higher order,

ombined with external information about people’s schedule, have

lso been used to improve the prediction accuracy. An order- k

arkov-based predictor with fall-back was proposed in [48] . The

redictor proposed by the authors falls back to a lower order of

 if a certain order- k predictor was unsuccessful. In addition, they

lso incorporate external information, such as the event notes on

icrosoft Outlook and Google Calendar, into the context of an O ( k )

arkov predictor, enriching the states in the underlying Markov

odel. In other works, the distances of trajectories, travel times,

riving habits, and social context have been incorporated into

orresponding models to compute the probabilities of future lo-

ations in [49,50,53,54] . Recently, it has been found that different

redictors should be applied according to the application scenario,

o the mobility characteristics of the data, and to individuals [55] .

o this aim, hybrid methods have been proposed, which uses dif-

erent prediction methods consecutively [51,52,56,57] , for different

atasets [32] , for each individuals [14,55] , or even for different

imes of the day [58] . 

Authors in [51] present a prediction model in LTE networks

hat combines two complementary algorithms: the global profiles-

ased and the local profiles-based algorithm. The former is imple-

ented in the enhanced Node B and the home enhanced Node B,

nd the latter works at the user terminal level. By using a real ve-

icle passage record dataset, the authors in [32] present the Global,

ersonal, and Regional Markov Model for a dataset with different

ranularity to tackle the problem of predicting next locations for

ehicles’ trajectories. In [58] , the authors proposed a prediction

ethods to capture the relationship between movement patterns

n different time periods, which are based on the important obser-

ation that movement patterns often change over time. In addition,
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Fig. 1. LTE network architecture. 
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ur previous studies suggest applying different prediction meth-

ds to users with distinct spatio-temporal characteristics. Spatio-

emporal based prediction methods are more suitable for those

ho visit very limited locations during the day and follow a regu-

ar pattern during the week. For those who spend much time com-

uting and follow a fairly regular pattern during the week, the

ext location prediction is more efficient [14,55] . Based on previ-

us studies, in this paper, we focus on improving Markov-based

rediction algorithms by addressing the following drawbacks of

any existing prediction methods: 

• Time independence: Markov-based models often disregard the

time of the day. However, the temporal factor is an important

feature that commonly affects people’s mobility, since people

tend to visit the same location at the same time of the day:

going to work in the morning and going back home at night,

for instance. 

• High memory cost: for every pattern representing a sequence

of locations visited by an individual, Markov-based algorithms

typically store the frequencies of all the next possible locations.

Storing all those values requires a large amount of memory,

especially when the length of location sequences is high, in-

creasing the number of possible patterns. Instead, considering

the spatio-temporal periodicity of people’s movement can re-

duce the number of possible patterns and hence the amount

of memory needed by Markov-based algorithms to predict the

next location. 

• New sequence of locations: Markov-based algorithm usually fail

to predict the next location when an individual is visiting a se-

quence of locations for the first time. In this case, considering

the next locations visited by other individuals who also visited

the same sequence of locations can help predicting the next lo-

cation. 

In addition, in our paper [59] , we find that users’ mobility pat-

erns have strong spatio-temporal correlation property, i.e., mobil-

ty patterns have their own typical occurrence time depending on

he pattern’s context. It drives us fully consider user’s mobility pat-

ern and its occurrence time while proposing the prediction model.

n general, compared to previous works, we propose a hybrid

arkov-based algorithm to address the issues mentioned above,

or predicting human mobility using non-Gaussian data consisting

f three basic attributes: the ID of users, their location, and the

orresponding timestamps. Firstly, characteristics of real mobility

ata extracted from data traffic of LTE network are examined, pro-

iding the factors we should consider when improving the predic-

ion accuracy of Markov-based methods. Then, instead of using a

arkov chain of fixed order, the frequent mobility sequences of

ocations are used to define the order. Secondly, the probability

f each Markov state is calculated by considering the time of the

ay. Finally, when a prediction cannot be computed, we estimate

he probability of the next location by looking at the locations vis-

ted by other users visiting similar locations. In summary, without

ntroducing other external information or datasets to enrich the

tates, the proposed model improves the Markov-based model by

iscovering and exploring the characteristics of user’s trajectory. 

. Mobility data characteristics 

In this section, we examine the characteristics of our dataset.

irst, we provide a brief description of the LTE network architec-

ure and how the data is collected from the network. Then the

ataset is analyzed to provide an overview of mobility features,

emonstrating how predicting users’ future locations could be

one by considering the non-Gaussian and spatio-temporal char-

cteristics of the dataset. 
.1. Data collection 

The dataset is collected from the LTE network of a large Chi-

ese city from October 10th 2013 to October 31st 2013, capturing

he mobility patterns of 3474 individuals for 21 days. A high-level

iew of the LTE mobile network with our data traffic capture de-

ice is shown in Fig. 1 . There are three major components in the

TE mobile network, namely the User Equipment (UE), the Radio-

ccess Network (RAN), and the Evolved Packet Core (EPC). 

The UE is any device used directly by an end-user to commu-

icate on the network, such as a smartphone, a laptop computer

quipped with a mobile broadband adapter, or any other commu-

ication device with a SIM card. 

The RAN establishes the connection between the UE and the

PC. It uses a flat architecture with multiple eNodeBs (evolved

odeBs). An eNodeB is a hardware equipment connected to the

obile phone network and communicating directly with mobile

andsets (UEs). 

The EPC is a packet-only core network. It serves as the equiva-

ent of GPRS networks via the Mobility Management Entity (MME),

erving Gateway (SGW) and Packet Data Network (PDN) Gateway

PGW) sub-components. 

The dataset used in this study is composed of LTE control-plane

ackets, which are collected by our custom Traffic Monitoring Sys-

em (TMS), deployed between eNodeBs and the MME, as shown in

ig. 1 . When a user actively uses the LTE network, the locations

f the corresponding eNodeBs associated with their UE are logged

nd later considered as the user’s location. If the user does not use

he LTE network, their UE in state EMM-REGISTERED initiates the

racking area updating procedure by sending a Tracking Area Up-

ate (TAU) request every 12 min. This means that we record the

ocation of active users with a small time granularity, and the lo-

ation of inactive users every 12 min. 

The collected dataset comprises a sequence of time-stamped

ecords, each of which mainly contains the user unique identifier,

he associated eNodeB unique identifier, and the online time. For

ecurity reasons, users’ confidential identifiers are replaced by a

ashed number, which is used to mark subscribers without infring-

ng their privacy nor affecting our study. 

.2. Non-Gaussian characteristic analysis 

We use three widely accepted indicators to describe large-scale

uman mobility: the trip distance r , the radius of gyration r g , and

he number of visited locations over time S ( t ). The radius of gyra-

ion captures how far the subscribers move instead of the actual

istance they travel. Visiting the same sequence of locations in a

ircle continuously does not increase the radius of gyration, but a

ong distance travel on a straight line does. The radius of gyration

s defined as: 

 g = 

√ 

1 

n 

n ∑ 

i =1 

( 
⇀ 

r i −
⇀ 

r cm 

) 2 , (1) 
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Fig. 2. The P ( r g ) distribution of the radius of gyration r g for users. 

Fig. 3. The trip distance distribution P ( r ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A Zipf distribution shows the probability of finding a user at different loca- 

tions that are ranked on the basis of their visit frequencies. 

Fig. 5. Histogram of lifetime duration of hotspots. 
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where 
⇀ 

r i presents the i = 1 , 2 , . . . , n -th locations recorded for a

given user describing their trajectory. 
⇀ 

r cm 

= 

∑ n 
i =1 

⇀ 

r i is the center

of mass point of the users’ trajectory. 

For our dataset, we found that the P ( r g ) distribution of the ra-

dius of gyration r g for users follows a power law distribution, i.e.,

P (r g ) ∼ r 
−β
g , with β ≈ 1.514, as shown in Fig. 2 [18] . In addition, the

trip distance distribution P ( r ), which quantifies the relative proba-

bility of finding a displacement of length r in a short time, fol-

lows a power law distribution, i.e., P (r) ∼ r −β, with β ≈ 2.462, as

shown in Fig. 3 [18] . According to the non-Gaussian characteristics

of users’ mobility data, we can conclude that, for most of the users,

the trip distance between two continuous observed displacements

is very small, and the movement range is limited, which imply that

people frequently move in a very small area. 

In order to better understand movement patterns in a spatio-

temporal perspective, we further analyze the dataset by answering

the following questions. “How many locations are visited by users”,

“Since most users visit a limited number of locations, how long

does it take for users to visit all these locations?”, “How often do

users return to the visited locations”. Answers to such questions

will provide the characteristics we should consider when improv-

ing the mobility prediction model. 

3.3. Spatial characteristic analysis 

In this subsection, we focus on the frequency of visits for each

user. We rank each location a user visits according to how often

the location is visited. For instance, a location with rank L = 1 indi-

cates the most visited location of the selected user. For each user,
e create the list of locations where they appear in the ascend-

ng order of the rank. Fig. 4 shows a Zipf distribution of the prob-

bility distribution of visit frequency of locations ranked L . Note

hat people spend roughly 40% of their time in their top two pre-

erred locations. This clearly shows that the number of primary lo-

ations each user visits is limited and even when users move be-

ween multiple locations, they can be found in their favorite loca-

ions with high probability. We also keep in mind that if an inac-

ive user moves to another place and then moves back within less

han 12 min, this displacement cannot be observed. 

We find that, for each individual, the locations users visit are

on-homogeneous, in both time and space. We would like to fur-

her examine how frequently different locations are visited by the

opulation in the city. Places with large population, such as big

hopping malls, residential areas, traffic hubs, or places for group

ctivities, are referred as “city hotspots” and are significant to the

ity. Identifying hotspots requires selecting an appropriate thresh-

ld for a parameter measuring the popularity of the location. Tra-

itional hotspot detection methods set a unique threshold for this

arameter, but this approach suffers from a lack of flexibility and

daptability. Here we will employ a parameter-free method that al-

ows us to control the effect of the threshold’s selection, and select

he threshold according to the actual situation of human’s mobility

60] . The detailed implementation for this method can be found in

59] . From our dataset, 101 hotspots in the city are identified. 

However, hotspots always change with time, which shows the

ovements of population in different regions in the city, as shown

n Fig. 5 . We can essentially distinguish three groups: the perma-

ent (from 19 up to 24 h), intermittent (from 1 up to 5 h) and

ntermediary (all the others) hotspots. These hotspots are crucial
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Fig. 6. The increasing of users’ radius of gyration r g with time in 21-day period. 

Fig. 7. Probability distribution of time to returning to the same location. 
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Fig. 8. Pre-processing module and hybrid Markov-based prediction model. 
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or a range of technology and policy decisions in areas such as

elecommunications and transportation infrastructure deployment. 

n our experiment, in order to focus on the popular places in the

ity, we use the identified hotspots to construct user’s trajectory. 

.4. Spatio-temporal characteristic analysis 

In order to understand the temporal periodicity of user’s move-

ent, we draw users’ radius of gyration against the time t . It is

xpected that the longer the duration t , the larger the radius of

yration r g ( t ). However, Fig. 6 indicates that there is a boundary

f the movement area for people [59] . The radius of gyration will

each almost close to the boundary, as it rises rapidly within 24 h

nd very slowly after that. 

We further investigate the reason for the quick saturation of the

adius of gyration by measuring the ‘return probability’ [61] for

ach user, defined as the probability that a user returns after t

ours to the same position. Fig. 7 shows the distribution has rel-

tive peaks at 24th, 48th, 72nd h [59] . It indicates the periodic

ature of human mobility within a 24-h period and tendency of

eturning to the same location periodically. The analyses of user

ovement verify that human trajectories do not show complete

andomness. On the contrary, it often exhibits a high degree of

emporal and spatial periodicity. That is, each individual may be

haracterized by a significant probability to return to a few highly

requently visited locations and dwell a longer duration in those

ocations. 

In summary, we find that people move regularly by day with a

imit range and the regularity can last for a long period of time,

hich imply that spatial and temporal factors can contribute a lot

o location prediction of users. The above observations drive us to

mprove the prediction accuracy of mobility prediction model by

ully considering the non-Gaussian and spatio-temporal character-

stics of real mobility dataset. 

. Hybrid Markov-based prediction model 

In this section, we propose a hybrid Markov-based model for

obility prediction, as illustrated in Fig. 8 . In the pre-processing

odule, after collecting the data traffic from the cellular network,

nd in order to generate the trajectories of users, three-tuples
 user ID, Base Station ID, Time > are extracted from the data.

ere, the visited locations of users are the locations of the corre-

ponding base stations, which can be distinguished by their unique

D. Then, we identify the hotspots in the city, and use hotspots as

ocations in users’ trajectories. New three-tuples < user ID, Hotspot

D, Time > are now the new input of the mobility prediction algo-

ithm. 

In order to fully consider the characteristics of our real dataset,

nd overcome the shortcomings of existing Markov-based pre-

iction algorithms, the proposed hybrid Markov-based prediction

odel for human mobility contains three parts: Mobility Pattern

iscovery, Variable-order Markov Predictor, and Users Similarity

alculation. At the first stage, we discover individuals’ mobility

atterns, and the frequent mobility sequences that are used next

o estimate the order of the Markov predictor for each individual

n the second stage. Then at the second stage, a temporal factor is

aken into consideration when predicting individual’s future loca-

ion with the variable-order Markov predictor. At the last stage, for

he next locations that could not be predicted by individuals’ own

istorical mobility patterns, we get the prediction results from in-

ividuals’ geo-friends, who exhibit similar mobility patterns. The

pecific methods used in the pre-processing module and in the

obility prediction model are illustrated in the next section. 

. Methods applied in the hybrid Markov-based model 

In this section, all the methods used in the pre-processing mod-

le and in the mobility prediction model are presented in the or-

er of prediction process, including the mobility pattern discovery

lgorithm, the variable-order Markov prediction algorithm consid-

ring temporal factors, and the mobility pattern based on users’

imilarity. 

.1. Mobility pattern discovery 

.1.1. Algorithm for discovering the mobility pattern 

In order to discover mobility patterns from the mobility trajec-

ories, the following formal definitions are given: 

efinition 1. (The length of mobility pattern) The length of mobil-

ty pattern p = < h 1 , h 2 , . . . , h n > is n when the pattern p contains

 hotspots. We denote the length of mobility pattern p by len ( p )

nd the mobility pattern as length-( n ) pattern. 
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Table 1 

Main notations of mobility pattern discovery algorithm. 

Notation Description 

δ Minimum support threshold 

T Set of mobility trajectories 

H Set of hotspots 

C K Set of length-( k ) candidate mobility patterns 

P K Set of length-( k ) mobility patterns 

P Set of all mobility patterns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Mobility pattern discovery. 

1: Input: Support threshold: δ
2: Set of mobility trajectories: T 

3: Set of hotspots: H 

4: Output: Set of mobility patterns: P 

5: procedure (mobilityPatternDiscovery) ( δ, T , H) 

6: k = 1 

7: C k = { h | h ∈ H} 
8: P k = { h | h ∈ H ∧ supp(h ) > δ} 
9: P = {} 

10: Repeat 

11: k = k + 1 

12: for all mobility pattern p k −1 ∈ P k −1 do 

13: for all frequent pattern p 1 ∈ P 1 do 

14: C k = { c k | c k = p k −1 ∪ p 1 } 
15: end for 

16: end for 

17: for all trajectory t ∈ T do 

18: C t = subset (C k , t ) 

19: for all candidate c ∈ C t do 

20: count(c) = count(c) + 1 

21: end for 

22: end for 

23: P k = { c | c ∈ C k ∧ sup(c) > δ} 
24: P = ∪ P k 
25: until P k = φ
26: Return P 

27: end procedure 
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For example, if mobility pattern p = < a, b, c, d >, len (p) = 4 and

mobility pattern p is length-4 pattern. 

Definition 2. (Sub-pattern) A mobility pattern p = < a 1 , a 2 ,

. . . , a n > is a super-pattern of another mobility pattern q = <

b 1 , b 2 , . . . , b m 

>, written as q ⊂ p , if pattern p contains pattern q .

And then, q is called a sub-pattern of p . 

For example, if mobility pattern p = < a, b, c, d > and mobility

pattern q = < a, b, c >, mobility pattern p is a super-pattern of pat-

tern q , and q is a sub-pattern of p . 

Definition 3. (Candidate mobility pattern) A mobility pattern p = <

a 1 , a 2 , . . . , a n > is a candidate mobility pattern, if its sub-pattern

q = < a 1 , a 2 , . . . , a n −1 > is discovered as a mobility pattern. 

For example, if q = < a, b, c > is a mobility pattern, p = <

a, b, c, d > is a candidate mobility pattern. 

Definition 4. (Support value) Let T = { t 1 , t 2 , . . . , t N } be a trajectory

set that contains N trajectories. The support value of pattern p is

defined as 

supp(P ) = 

|{ t i | P ⊂ t i and 1 ≤ i ≤ N}| 
N 

. (2)

For example, if a trajectory set contains 10 trajectories and 6

trajectories contain the mobility pattern p, supp ( p ) equals 0.6. 

Definition 5. (Mobility pattern) Given a minimum support thresh-

old, δ, a candidate mobility pattern p is defined as a mobility pat-

tern if and only if p has support value satisfying: supp ( P ) ≥ δ. 

We modify the Apriori algorithm in order to mine the frequent

mobility sequences in the trajectories [59] . We refer to the mod-

ified version of the Apriori algorithm as the mobility pattern dis-

covery algorithm. Contrary to the traditional frequent item discov-

ery algorithm, here the frequent mobility sequences we discovered

contain consecutive locations and the maximum mobility patterns

are selected as the final result. The main idea of this algorithm

is to discover a continuous trajectory, for which the support value

is larger than δ. We first calculate each hotspot’s support value

and the set of mobility patterns with length-1 are generated. Then

the mobility patterns with length- k are generated through mobil-

ity patterns with length- (k − 1) . The iteration is ended when the

set of length- k is φ. 

The main notations used in our method are listed in Table 1

and the pseudo-code of our algorithm is shown in Algorithm 1 . 

5.2. Variable-order Markov prediction algorithm considering temporal 

factors 

The order- k Markov predictor assumes that the next location

depends only on the last k locations. The history’s length l is called

the order of the Markov predictor. Some Markov predictors fix, in

advance of the model creation, the value of l , presetting it in a con-

stant k in order to reduce the size and complexity of the prediction

model. These predictors are termed fixed length Markov predictors

of order k [62] . However, we advocate to set the order of Markov

predictors according to the mobility pattern of each individual. 
In this section, we present a variable-order Markov predictor

onsidering temporal factors. In this predictor, the length-( n ) mo-

ility patterns we have discovered for each user are the current n

ovements. Also, the mobility patterns’ length is different for each

ser. For a next location of a user we want to predict, we first seek

or frequent patterns with the maximum length. If the prediction

annot be made with the maximum mobility pattern, we look for

he maximum mobility patterns’ sub-pattern, which indicates that

he predictor’s order is variable for each prediction with different

sers. 

In addition, the temporal characteristic of mobility pattern in-

icates the time regularity of mobility pattern, which should be

onsidered in our model. Here, the occurrence time distribution of

obility pattern P ( p t ) is measured by the following formula: 

 (p t ) = 

frequency of mobility pattern p occurring in time slot t 

total frequency 
. 

(3)

Here, the time period is divided into hours, and each time slot

quals to one hour. Let X t be a random variable, and x t a history

otspot in a specific trajectory that appears in time slot t . Then

 (X t = x t | . . . ) denotes the probability that X t takes the value x t .

e calculate the score for each x t by the following equation: 

 (X t+1 = x t + 1 ) = P (X t + 1 = x t+1 | X t−k +1 = x t−k +1 , . . . , X t = x t ) × P (p t ) ,

(4)

here p t starts with < x t−k +1 , . . . , x t > . In the final prediction, we

et x t+1 with the maximum probability P (X t+1 = x t+1 ) . 

.3. Users similarity calculation algorithm 

Notice that if the next location has never occurred in the his-

ory mobility patterns, the variable-order Markov prediction based



Y. Qiao et al. / Neurocomputing 278 (2018) 99–109 105 

Table 2 

Main notations of users similarity calculation algorithm. 

Notation Description 

sim ( P, Q ) The similarity value of two mobility patterns P and Q 

sim ( u | u ′ ) The relative similarity of u to u ′ 
LCS ( P, Q ) The longest common sequence of two mobility patterns P and Q 

lenLCS ( P, Q ) The length of two mobility patterns’ longest common sequence 
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n mobility pattern makes no predictions. Under these circum-

tances, the mobility pattern of his geo-friend is taken into con-

ideration. A geo-friend shares similar mobility patterns with the

urrent user. When the user’s own history mobility pattern cannot

redict his next location, we use the mobility pattern of his geo-

riends to predict his next location, which can improve the predic-

ion accuracy. 

Similarity based on mobility patterns is an indicator of two

sers’ similarity in space, which could be quantified by apply-

ng the core idea of Collaborative Filtering (CF) algorithm, i.e.,

ooking for users who share the same rating patterns with the

ctive user (the user whom the prediction is for). CF, a method

f making automatic predictions (filtering) about the interests of

 user by collecting preferences or taste information from many

sers (collaborating), usually contains user-based and item-based

ecommendation. In this paper, we employ a user-based recom-

endation method to predict user mobility when the user’s own

obility pattern cannot contribute to his/her prediction. Here we

mploy a similarity calculation algorithm based on user’s mobility

atterns to find the his/her geo-friends [63] . Some important

efinitions of the mobility pattern based similarity calculation

lgorithm are introduced in Table 2 . 

In addition, given two users u and u ′ , function ψ u,u ′ : P u → P u ′ 
s used to map a maximal mobility pattern of u to the most

imilar maximal mobility pattern in P u ′ . Specially, for each P i ∈ P ,

 u,u ′ (P i ) = max 
Q j ∈ Q 

sim (P i , Q j ) . 

Our main idea is to exploit the intuition that if user u is sim-

lar to user u ′ , then any pattern of u will correspond to a similar

attern of user u ′ . Therefore, the similarity calculation consists of

wo steps. In the first step, each pair of sequence patterns from the

iven two maximal patterns sets respectively are compared and

he result is called the pattern similarity between them. In the sec-

nd step, the calculated pattern similarity values are combined in a

pecific way as the final value of user similarity. The specific steps

re shown below. 

.3.1. Calculating similarity of mobility patterns 

The mobility patterns in a pattern set contain duplicated in-

ormation. If we compare two users’ mobility patterns using the

riginal pattern sets, some behavior will be used more than once.

herefore, maximal pattern sets are employed in computing user

imilarity. The similarity between two maximal mobility patterns

s calculated based on the intuition that the more similar they are,

he longer common pattern they share. The Longest Common Se-

uences (LCS) refer to their longest common patterns. The similar-

ty between P and Q is calculated as follows: 

im (P, Q ) = 

2 × lenLCS(P , Q ) 

len (P ) + len (Q ) 
. (5)

.3.2. Calculating similarity of two users 

For each user, we compute his relative similarity to others. The

elative similarity of u to u ′ , denoted by sim ( u | u ′ ), is calculated as

he average weighted value of all the pattern similarity values of

he identified most similar pattern pairs: 

im (u | u 

′ ) = 

∑ 

P i ∈ P sim (P i , ψ u,u ′ (P i )) × ω(P i , ψ u,u ′ (P i )) ∑ 

P ∈ P ω(P i , ψ u,u ′ (P i )) 
. (6)
i 
The weight function can be defined in different ways according

o the various requirements of applications for user similarity. For

nstance, a user may be considered to be more similar to another

s long as they share more common movements in some appli-

ations, while other applications may require two similar users to

hare more behaviors, the source data of which are only possessed

y them. In this paper, we adopt the first interpretation. Thus 

(P, Q ) = 

supp u (P ) + supp u ′ (Q ) 

2 

. (7) 

We can also compute the relative similarity of u ′ to u , i.e.,

im ( u ′ | u ). As the relation of similarity should be symmetric, we

alculate the average of the two relative similarity values as the

imilarity between users u and u ′ : 

im (u, u 

′ ) = 

sim (u | u 

′ ) + sim (u 

′ | u ) 

2 

. (8)

The pseudo-code of mobility pattern based similarity calcula-

ion algorithm is shown in Algorithm 2 . 

lgorithm 2 User similarity calculation algorithm. 

1: Input: Set of mobility patterns of user u : P u 
2: Set of mobility patterns of user u ′ : P u ′ 
3: Output: Similarity of two users: sim (u, u ′ ) 
4: procedure userSimilarityCalculation (P u , P u ′ ) 
5: for all mobility pattern p u in P u do 

6: for all mobility pattern p u ′ in P u ′ do 

7: sim (P u , P u ′ ) = 

2 × lenLCS(p u , p u ′ ) 
len (p u ) + len (p u ′ ) 

8: end for 

9: ψ u,u ′ (p u ) = max sim (p u , p u ′ ) 
10: end for 

11: sim (u | u ′ ) = 

∑ 

sim (p u ,ψ 

u,u ′ (p u )) ×ω(p u ,ψ 

u,u ′ (P u )) ∑ 

ω(p u ,ψ 

u,u ′ (P u )) 

12: for all mobility pattern p u ′ in P u ′ do 

13: for all mobility pattern p u in P u do 

14: sim (P u ′ , P u ) = 

2 × lenLCS(p u ′ , p u ) 
len (p u ′ ) + len (p u ) 

15: end for 

16: ψ u ′ ,u (p u ′ ) = max sim (p u ′ , p u ) 
17: end for 

18: sim (u ′ | u ) = 

∑ 

sim (p 
u ′ ,ψ 

u ′ ,u (p 
u ′ )) ×ω(p 

u ′ ,ψ 

u ′ ,u (P 
u ′ )) ∑ 

ω(p 
u ′ ,ψ 

u ′ ,u (P 
u ′ )) 

19: sim (u, u ′ ) = 

sim (u | u ′ ) + sim (u ′ | u ) 
2 

0: end procedure 

. Performance evaluation of hybrid Markov-based model 

The mobility prediction problem can be formalized as a contex-

ual prediction problem where the future movements are assumed

o depend only on the user context, which is characterized by a

eal dataset in this paper. We assume the existence of a gradually

opulated/trained knowledge base and try to compare the move-

ent pattern of a certain object with stored information in or-

er to predict its future locations. The assumption is based on the

epetitive nature of human mobility: similar contexts might imply

imilar movements in the future. Therefore, simple and effective

rediction algorithm can achieve high prediction accuracy by fully

onsidering the temporal and spatial regularity in people’s history

rajectories. In this section, by using users’ trajectories extracted

rom real data traffic of a 4G network, we evaluate the proposed

odel by analyzing the results of each applied method, and com-

aring the prediction accuracy at each stage of the model. In ad-

ition, the proposed model can also be further evaluated by com-

aring the prediction accuracy with other prediction algorithms. 
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Fig. 9. Distribution of occurrence time for individual mobility patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Distribution of occurrence time for mobility pattern of crowds. 

Fig. 11. CDF of geographic friend similarity. 
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6.1. Verify the spatio-temporal characteristics of discovered mobility 

pattern 

To improve the prediction accuracy of Markov-based algorithm,

one of our key ideas is applying the variable-order Markov pre-

dictor. In this paper, the order and state transferring probability of

variable-order Markov predictor are determined by the length of

most frequent mobility pattern and occurrence time distribution

of mobility pattern for current individual respectively. In order to

examine the characteristics of mobility patterns from individuals’

point of view, based on the obtained results from the first stage

of proposed hybrid Markov-based Prediction Model, we draw the

top four mobility patterns for user X per hour, as shown in Fig. 9 .

Pattern 1 always occurs in the morning and Pattern 4 usually oc-

curs in the evening. Moreover, Pattern 2 and Pattern 3 both occur

during the daytime. 

Individual mobility pattern is a general description of human

mobility. The individual mobility patterns provide significant in-

formation about mobile phone users’ behaviors. We can conclude

from the analysis above that they have strong spatio-temporal cor-

relations. This means that each individual mobility pattern has its

own most probable occurrence time. We can implement the mo-

bility pattern discovery algorithm for each individual, to discover

each individual’s mobility patterns and their most probable occur-

rence time. Then, we can predict each individual’s position at a

specific time instead of just predicting the next hop of one user,

which can improve the prediction accuracy when predicting user’s

future movements. 

6.2. Examine the effectiveness of users similarity calculation 

In order to predict user’s future movement even when the new

location has never been visited by him/her, we use his/her geo-

friend’s prediction result. In this paper, a CF based method is em-

ployed to calculate the similarity of users’ trajectories based on

users’ mobility patterns. Here, reasonable questions to ask are,

does every user have a geo-friend? How similar two geo-friends

are? To answer above questions, in this section, we study the mo-

bility characteristics of crowds in the city, and analyze the results

of Users Similarity Calculation Algorithm with real dataset. 

After applying our mobility pattern discovery algorithm to real

dataset, Fig. 10 shows the top five mobility patterns of crowds for

each hour. The mobility pattern of crowds changing with time in-

dicates a large crowds’ traffic among the specific locations at a

specific time, which can contribute to the discovery of common

mobility routes and users sharing similar movement patterns. We

can conclude that there is a strong correlation between the occur-

rence time and daily user activities. The probability of these five
ost popular patterns’ occurrence times is higher in the morning,

hich indicates that these common mobility patterns tend to oc-

ur at this time of the day. 

Mobility pattern of crowds and the distribution of their time of

ccurrence suggests that humans tend to share common mobility

atterns and that the occurrence time distributions tend to be sim-

lar with each other. This indicates that two users with high spatial

imilarity are capable of describing each other’s mobility pattern. 

Then, we apply the Users Similarity Calculation Algorithm to

ur dataset, and try to understand how well geo-friends can tell a

ser’s mobility patterns. Firstly, we compute the similarity in space

etween each user. And then for each user we select his/her geo-

riend, who shares the maximum number of common mobility pat-

ern. As shown in Fig. 11 , we find that among all user’s geo-friends,

early 50% of their similarity value can achieve 0.8 and 80% can

chieve 0.6 , which indicates that the most similar geo-friend of a

ser can tell a lot about his/her mobility. Therefore, when a user’s

istory mobility pattern cannot predict user’s future movement, his

eo-friend’s mobility pattern can be taken into consideration. 

.3. Evaluate different stages of hybrid Markov-based model 

The predictors are implemented according to the description of

ection 4 . The model returns a wrong prediction result if the pre-

ictor estimates a wrong next place. The most common statistical

etric for assessing the capability of Markov to predict user’s fu-

ure location is the proportion of correct predictions. Here we de-

ne the accuracy of each predictor for each location to be the frac-

ion of users for which the predictor correctly identified the next

ove. The prediction accuracy can be evaluated as follows: 

prediction accuracy = 

number of correct prediction 

number of all predictions 
. (9)

Then we get the average prediction accuracy for each predic-

or at each location. Note that, Markov models will inevitably en-

ounter situations where they are unable to make a prediction. If

he predictor returns “no prediction”, it is counted as an incorrect

rediction. 

In our experiment, the dataset is divided into two parts. Since

he data covers three weeks (21 days), the data of the first two

eeks is used to discover the mobility patterns and the data in

he third week is used to make prediction. 
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Fig. 12. The prediction accuracy varies with support threshold δ. 

Fig. 13. Box plot of prediction accuracy for three stages of our hybrid Markov-based 

prediction model in three stages. 

Fig. 14. Prediction accuracy of three stages of hybrid Markov-based prediction 

model evolving with time. 
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Fig. 15. Comparison of prediction accuracy between several prediction algorithms. 
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In our mobility pattern discovery algorithm, the support thresh-

ld δ may affect the number and the maximum length of the

obility patterns, which may affect the prediction accuracy fi-

ally. Therefore, we study the influence of δ over the overall pre-

iction accuracy firstly. Fig. 12 shows the prediction accuracy of

ariable-order Markov changing with different value of the support

hreshold δ. From Fig. 12 we can see that the prediction accuracies

f two algorithms both achieve the highest score when the sup-

ort threshold δ equals to 0.7. Therefore, we set support thresh-

ld δ to 0.7, under which condition the prediction accuracy can

chieve 48.81% (original variable-order Markov) and 53.42% (mod-

fied variable-order Markov considering temporal factor). 

Fig. 13 illustrates the prediction accuracy under three stages

f hybrid Markov-based prediction model, i.e., stage 1: original

ariable-order Markov, stage 2: variable-order Markov considering

emporal factor, and stage 3: variable-order Markov considering

emporal factor and geo-friend. By employing the mobility pat-

ern of geo-friends, our hybrid Markov-based prediction model

an reach 56.39% prediction accuracy. For the same dataset, the

riginal Markov has 44.02% prediction accuracy. 

In addition, we further examine the prediction accuracy at dif-

erent time period in a day. Fig. 14 illustrates the distribution of
rediction accuracy varying with time. From the figure we can

onclude that the prediction accuracy reaches the highest during

:00 a.m. and 7:00 a.m. It indicates that it is easier to predict hu-

an mobility in the morning, when a large number of people fol-

ow the similar commute patterns (as shown in Fig. 10 ). 

.4. Compare the prediction accuracy between different prediction 

lgorithms 

In our previous studies, we applied varied many meth-

ds to predict users’ future movements [14,15,18,55] . Prediction

lgorithms have their own characteristics, and the prediction

esults are different when applying the algorithm to different

atasets, crowds, and individuals, even to the same dataset in dif-

erent time period. This is because although human trajectories

ave a high degree of temporal and spatial regularity, their be-

aviors are diverse. Therefore, we aim at improving the prediction

ccuracy by discovering the mobility characteristics of users. Com-

aring the prediction accuracy of the proposed Hybrid Markov Pre-

iction Model with other prediction algorithms, i.e., HMM-based

Hidden Markov Model-based) [15] , NextPlace [15] , variable-order

arkov, and LZ family (LeZi family) [55] , as shown in Fig. 15 , we

an clearly see that, HMM outperforms others. However, HMM

as high time and spatial complexity, and tends to consume a lot

f resource in production environment, which greatly restrict its

ractical application. The proposed Hybrid Markov-based Predic-

ion Model in this paper has the best prediction accuracy among

ther evolved algorithms based on Markov models. As a result, we

an confirm that our model is efficient, which drives us to further

mprove the prediction algorithm by considering the mobility char-

cteristics of human trajectories. 

. Conclusions 

In this paper, we aim at improving the prediction accuracy of

arkov based prediction algorithms by considering non-Gaussian

nd spatio-temporal characteristics of a real dataset. In our ex-

eriments, by using real human trajectories extracted from data

raffic of an LTE network, we analyze the characteristics of user’s

obility with trajectories of 3474 people during 21 days. The

nteresting findings include: the indicators of user’s mobility (trip

istance, and radius of gyration) have non-Gaussian characteristics,

eople are frequently visiting a limited number of places, people

re generally moving periodically within a bounded region, but are

ccasionally traveling long distance, and individuals tend to share

imilar mobility patterns in the city. The analysis results reveal

hat a strong temporal and spatial regularity exists in people’s

aily activities, which drives us to improve the prediction accuracy
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by focusing on discovering spatio-temporal regularity of people’s

movements. 

Based on the analysis results, we proposed a hybrid Markov-

based prediction model that contains three stages: mobility

pattern discovery, variable-order Markov predictor considering

temporal factors, and mobility pattern based users similarity cal-

culation. In the first stage, a modified Apriori algorithm is applied

to discover the frequent mobility patterns in user’s trajectories,

the length of which provides the value of order for the Markov

predictor in the next stage. In the second stage, we apply a

modified variable-order Markov algorithm to make the prediction.

In this stage, the transition probability of each state is calculated

by considering the occurrence probability and the occurrence time

distribution of mobility patterns. In the third stage, in order to

get the prediction result even when the current location has not

occurred in previous trajectories, we consider the trajectories of

“geo-friends” into account. We employ the Collaborative Filtering

algorithm to find “geo-friends”, who share similar mobility pat-

terns with the current user in daily life. Experiment results show

that prediction accuracy increases to 53.42% from 48.81% if we add

the occurrence time distribution into the variable-order Markov.

In addition, 56.39% prediction accuracy could be achieved by con-

sidering the mobility pattern of “geo-friends” when a context has

not been previously seen. The proposed model outperforms other

evolved algorithms based on Markov models we have applied in

our previous studies. 

For future work, some other special situations such as weekend

and activity changes should also be considered in our model. In

addition, extensive experimental evaluations should be conducted

to compare our model with other classical prediction algorithms

on different datasets. The quantitative and qualitative comparison

in terms of prediction accuracy, time complexity, energy and re-

source consumption, is essential, which will guide us to apply the

model to the most suitable production environment. 
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