APPENDIX A: COMPARISON OF EXISTING SURVEY REGARDING ASVS

Surveys	Publish Year	Focus	Р	N	G	С	R	N&C	Со	DL
Caccia [1]	2006	Recently developed autonomous surface crafts, the research, and legal issues.	 ✓ 	\checkmark	\checkmark	\checkmark	~	+	+	<u> </u>
Bertram [2]	2008	Several military and research ASV prototypes.	 ✓ 							
Manley [3]	2008	Several typical ASVs developed during 1993 and 2008.	 ✓ 							
Rynne et al. [4]	2009	Introducing the motivation, navigation, control, application, and policy of unmanned autonomous sailing craft.	~	~		\checkmark	~			
Yan et al. [5]	2010	The applications, developments, and challenges of Navy ASVs.	 ✓ 			+				<u> </u>
Ashmafirran at al. [6]	2010	The development of set-point, trajectory tracking, and path following control								
Ashranuon et ul. [6]	2010	algorithms and methodologies for autonomous underactuated marine vehicles.				~				ĺ
Stelzer et al. [7]	2011	Architecture, developments, and competitions of robotic sailing boat.	✓			\checkmark				
Campbell et al. [8]	2012	The ASVs' prototypes, subsystems, and NGC, especially how to comply with COLREGs guidelines.	~	~	~	\checkmark	\checkmark	+	\checkmark	+
Zheng et al. [9]	2013	The architecture, typical prototypes, and technologies for improving the intelligence of marine surface vehicle.	~	~	~	\checkmark			+	+
Othman [10]	2015	Several ASVs' prototypes.	\checkmark							
A	2015	The review of research work on control system approaches of ASVs,	1.							
Azzeri et al. [11]	2015	especially the course keeping control.	+			~				+
Manley [12]	2016	The reviews of sub-component technology and developments for unmanned maritime vehicles system over the past 20 years.	~				+	+		
I	2016	A comprehensive survey about the existing ASV prototypes, and					/		/	
Liu et al. [13]	2016	NGC methods, along with their applications, methodologies, and challenges.	↓ ✓	 ✓	↓	~	V	✓	~	+
Schiaretti et al. [14]	2017	Definition and categorization of autonomy levels for autonomous surface vessel.							~	
Schiaretti et al. [15]	2017	A comprehensive review of existing autonomous surface vessel prototypes.	 ✓ 							
Prasad et al. [16]	2017	A comprehensive overview of various approaches of video processing		1						
1100000 01 00. [10]	2017	for object detection and tracking in the maritime environment.		Ľ						
Liu et al. [17]	2018	Techniques related to the operation of multi-vehicle systems in different environmental domains.		+	 ✓ 	\checkmark		+	\checkmark	+
Cappelle et al. [18]	2018	Technology developments related to autonomous shipping and their technology readiness level.		~	~	~	+	~		+
Ge et al. [19]	2018	Wireless communication techniques for ASVs.	+					\checkmark		
Zereik et al. [20]	2018	The present status of marine robotics and their applications.	+					+	+	
Polvara et al. [21]	2018	Collision detection and path planning methods for ASVs.	1	\checkmark	\checkmark	\checkmark	+	+		+
	2010	Applications of unmanned surface,								
Moud <i>et al.</i> [22]	2018	underwater and ground vehicles in construction.	+							
Zolich et al. [23]	2019	Communication and networking technologies that could help	+				+	1	+	
201011 07 mi [20]	2017	the integration of autonomous systems in maritime scenarios.	<u> </u>					•		L
Ellefsen et al. [24]	2019	DL techniques based intelligent								\checkmark
Vauluas at al [25]	2010	Prognostics and health management system for auto-ships.	<u> </u>							<u> </u>
Verfuss et al. [25]	2019	Applications and roles of ASVa for Disaster Management	+							<u> </u>
Jorge et al. [26]	2019	Applications and roles of ASVS for Disaster Management.	+	+		+	+	+	+	+
Munim [27]	2019	an economic environmental and social perspective	+							ĺ
Wang et al [28]	2019	Development and application related to ASV in China		+	+	+		+		l
	2017	Current advances in automated planning for	-	<u> </u>						
Thompson <i>et al.</i> [29]	2019	autonomous marine vehicle fleets.	+					√	~	+
Silva et al. [30]	2019	Developments of rigid wing sailboats in terms of hardware and software.	V	+		\checkmark		~		
Wang et al. [31]	2019	Motion control of MASS.	+	+		\checkmark				+
Huang et al [22]	2020	Collision prevention techniques based on motion and conflict detection,		1		1	1			
Thuang et ut. [52]	2020	and conflict resolution both for manned and unmanned ships.	+	v	+	~	v	+	+	+
Jing et al. [33]	2020	Path planning and navigation methods for autonomous vessels and sailboats.	+	+	\checkmark		+			
Zhou et al. [34]	2020	The path planning of multi-modality constraint research			V		+			
Peng et al. [35]	2020	Recent advances and challenges in coordinated control of multiple ASVs	+	+	+	1				+
Chen et al [36]	2020	A comprehensive overview on cooperative control methods for waterborne transport	+ '	<u> </u>		×	1		• ✓	+
	2020	The major advancements in maritime collision avoidance navigation technologies		<u> </u>				•	•	-
Zhang et al. [37]	2021	applied in several different scenarios, from transportation to scientific research	+	+	✓	+	\checkmark	+		+
Karimi et al. [38]	2021	Recent developments on guidance and control methods for marine robotic vehicles.	1	+	\checkmark	\checkmark		+	+	\checkmark
Vagale <i>et al.</i> [39]	2021	Path planning algorithms of autonomous surface vehicles and their classification.	+	+	$\overline{\mathbf{v}}$	+	\checkmark			
Thombre et al. [40]	2021	State-of-the-art in situational awareness for autonomous vessels.	+ .	· ·	<u> </u>	<u> </u>				\checkmark
Gu et al. [41]	2022	Overview of recent advances in LOS guidance for path following	-	+ ·		\checkmark	•			· ·
	0000	A comprehensive survey about application of DL methods on NGC system					,	- , ·		
Our Work	2022	of ASVs and maritime cooperative operations, as well as their challenges.	 ✓	 ✓	√	~	V	√	 ✓ 	~

TABLE A.1: Comparison of existing survey regarding ASVs.

Notes: The symbol " \checkmark " marks publications that discuss the topic in detail; "+" indicates corresponding scope is briefly mentioned instead of careful investigation. "**P**" is for prototypes or projects: including the physical ASV prototypes and their hardware, software and applications, or the projects that develop these prototypes; "**G**" is for Guidance; "**N**" is for Navigation; "**C**" is for Control; "**R**" is for rules or regulations, e.g., the effect to comply with COLREGs guidelines; "**N&C**" is for Networking and Communications; "**Co**" refers to cooperation between multi-vehicles; "**DL**" is for deep learning.

APPENDIX B: OVERVIEW OF COMMERCIAL AND RESEARCH ASV PROJECTS

Prototype	Navigation					Guidance	Contr	ol					
Name	G	I	Sen Ra	sors So	Ca	Со	SE/DE Algorithm	Path-plan	Controller	Steering	COMM.	Purpose	REF.
ARTEMIS	~					~	DR		fuzzy controller	rudder	radio	data collection	[42]
ACES	\checkmark			~						rudder	radio	data collection	[43]
Kayak	~					\checkmark			PID	rudder	radio	fish tracking	[44]
Autocat	\checkmark			\checkmark						DT		survey platform	[45]
MESSIN	\checkmark					\checkmark	NOMOTO			rudder	UHF	measuring tasks	[46]
ASV ¹	\checkmark	\checkmark				\checkmark				DT	BreezeNet acoustic	support UUV	[47]
SCOUT ¹	~			~	~	~			PID		WiFi,RF acoustic	test platform	[48]
Charlie	\checkmark				\checkmark	\checkmark	KF	LOS	PID	DT	WLAN	data collection	[49]
OASIS	\checkmark	~	~		~	~				rudder	WiFi,cellular radio,sattelite	data collection	[50], [51]
ASV	✓				√		EKF/RAA			DT		shoreline mapping	[52]
Springer	\checkmark					\checkmark			GA-MPC	DT		environment monitoring	[53]
Atlantis	\checkmark		\checkmark			\checkmark	OKID		LQG	rudder		test platform	[54]
Delfim ¹	\checkmark			\checkmark			KF			DT	radio,acoustic	data collection	[55]
ROAZ ¹	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	EKF/EBD	LOS	HA		radio,acoustic	environment monitoring	[56]
ROAZ II	\checkmark	\checkmark		\checkmark	\checkmark		KF/EBD		HA		WiFi	search and rescue	[57]
ROSS	\checkmark	\checkmark				\checkmark	NOMOTO	LOS	PD	DT	RF	data collection	[58]
ASMV ¹²	\checkmark			\checkmark	\checkmark	\checkmark			NN		WLAN,cellular	coastal observation	[59]
Swordfish	~	~		~	~	~				DT	WiFi,Freewave GSM,acoustic	survey and relay	[60]
Zarco	✓	 ✓ 				~	EKF			DT	WiFi	data collection	[61]
Fast	~					~	FSM			rudder	WiFi,radio GSM,satellite	oceanographic missions	[62]
ALANIS	\checkmark		\checkmark			\checkmark	KF	LOS	PD	rudder	radio,wireless	coastal monitoring	[63]
ASV	~			~	~	~	KF	PFA	Proportional	rudder and DT	WLAN	environment monitoring	[64]
USV	\checkmark				\checkmark					DT	WLAN	surveillance,sampling	[65]
Nereus	\checkmark				~	\checkmark			PI	DT		coastal observation	[66]
Wave Glider	~				~	~	DR				satellite,RF acoustic	environment monitoring	[67]
WASP	\checkmark	\checkmark				\checkmark				rudder		oceanographic missions	[68]
ASV	\checkmark	~		~		\checkmark	EKF		PI	rudder	wireless	caging missions	[69]
SOTOB II	\checkmark					\checkmark			PID	rudder	satellite	monitoring of oil spills	[70]
ASC	~								PI	DT	RF	environment monitoring	[71]
Squirtle	\checkmark	√		\checkmark	\checkmark		EKF	DWA		DT	WiFi,Xbee	environment monitoring	[72]
ASB	\checkmark	\checkmark		\checkmark	\checkmark		/CC	PFA	PD	rudder	radio,WiFi	long-term missions	[73]
WHOI	✓	\checkmark							PID		radio,WiFi	data collection	[74]
HydroNet	\checkmark			 ✓ 		\checkmark	EKF		sliding mode	rudder	radio	environment monitoring	[75], [76]
SMIS USV ¹	\checkmark		\checkmark	~						rudder	WiFi,satellite UHF,acoustic	communication relay	[77]
mini-ASV	\checkmark	\checkmark						LOS	PID	rudder	wireless	experimental use	[78]
BUSCAMOS ¹	\checkmark		 ✓ 	 ✓ 	\checkmark	 ✓ 		SODMN	neuro	rudder	WiFi,radio	monitoring of oil spills	[79]
LICK					· ·		1/T		controller	and DT	satellite		[]
USV	 ✓ 	✓					KF		PID	rudder	DE	environment monitoring	[80]
ASV UCV2	 ✓ 	✓	1.			~	LIKE		DID		KF	swarming application	[81]
05V-	~	~	11	✓	~		UKF		PID	rudder	radio	sampling and rescuing	[82], [83]
UACP	~	~						LOS	loop		WiFi	search and rescue	[84]
PlaDyPos ¹	\checkmark	\checkmark		\checkmark	\checkmark						WiFi,acoustic	environment monitoring	[85]
JingHai-I	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark		VGA	GPC-PID	rudder	RF,satellite microwave	test platform	[86]
USV	\checkmark	\checkmark						A*		rudder	GPRS	research	[87]
Roboat	\checkmark	 ✓ 	li				EKF		NMPC		RF,WiFi	transportation	[88]
USV	\checkmark	 ✓ 								DT	WiFi	monitoring of oil spills	[89]
Jetskins ²	\checkmark	\checkmark	li	\checkmark	\checkmark		/ML	RTT	ardupilot	DT	WiFi	environment monitoring	[90]
USV	~					~	/YOLO3				GSM/GPRS XBee	environment monitoring	[91]
Roboat II	✓	✓	li		✓		NMHE	A*	NMPC	DT	WiFi	urban transportation	[92]
Catabot	\checkmark	\checkmark	li	\checkmark	\checkmark	\checkmark				DT	WiFi,radio	environmental monitoring	[93]
ASV	\checkmark	\checkmark	li	\checkmark	\checkmark	\checkmark	EKF	LOS	PD	DT	WiFi	test platform	[94]
VIAM-USV2000	√		li					GA,LOS	PD	DT	WiFi,radio	environmental monitoring	[95]

TABLE B.1: Overview of Commercial and Research ASV projects I

 Notes:
 1.Cooperation with AUV
 2.Cooperation with UAV

 Navigation:
 G: GPS, I: INS, Ra: Radar(li: lidar), So: Sonar, Ca: Camera, Co: compass, SE: State Estimate, DE: Detection

 Control:
 HA: Hybrid Automation, NMPC: Nonlinear Model Predictive Control, DT: Differential Thrust

 Algorithm:
 DR: Dead-Reckoning, KF: Kalman Filter, EKF: Extended Kalman Filter, UKF: Unscented Kalman Filter, RAA: Radial Analysis

Approach, OKID: Observer/Kalman System Identification, EBD: Edge and Blob Detection, FSM: Finite State Machines, CC: Colorimetric Criteria based Algorithm, ML: Machine Learning, LOS: Line-Of-Sight Algorithm, PFA: Potential Field Approach, DWA: Dynamic Window Approach, SODMN: Self Organization Direction Mapping Network, VGA: Visibility Graph Algorithm, GA: Genetic Algorithm, NMHE: Nonlinear Moving Horizon Estimation

Prototype		Institution		Dime	ension		Parame	ters		Compone		
Name	Year	Country	Corp.	L(m)	W(m)	Wt(kg)	Sp(m/s)	En	Type	Propulsion	Power	Applications
ARTEMIS	1996	USA	MIT	1.4	0.4	29.5	1.2	4h	M	a thruster motor	batteries	
ACES	1997	USA	MIT	1.8	1.3	90.7	2.6	12-18h	С	a stepper motor	gasoline	[96]
Kayak	1998	USA	MIT	3	0.68	19.5	1.5	24h	М	a propeller	batteries	
Autocat	2000	USA	MIT	1.22	0.61	10	3.8	6h	С	two propellers	batteries	
MESSIN	2000	Cormany	University						C	propeller	battorios	
WESSIN	2000	Germany	of Rostock						C	propener	Datteries	
ASV	2003	USA	FAU				2.6	24h	C	two trolling motors	batteries	
SCOUT	2005	USA	MIT			81.6	2.6		M	a trolling motor	batteries	[97]
Charlie	2005	Italy	CNR-ISSIA	2.4	1.8	300			C	two propellers	solar	[98]–[100]
OASIS	2006	USA	CIT	5.48	1.52	1360	1.3	3-6m	M	propeller	solar	[101]
ASV	2006	USA	Virginia Tech	2.7	1.5	125	1.6	3-4	C	two thrusters	gasoline	
Springer	2006	UK	University of Plymouth	4	2.3		2		С	two propellers	batteries	
Atlantis	2006	USA	ÚC	7.2	3				С	a sail	wind	
Delfim	2006	Portugal	ISR/IST	3.5	2	320	2.6		С	two propellers	batteries	
ROAZ	2006	Portugal	ISEP	1.5	1				С	two thrusters	solar	[102]
ROAZ II	2007	Portugal	ISEP	4.5	2.2	200			С	two trolling motors	batteries	[103]
ROSS	2007	India	NIO	1.84	0.36	95.5		7h	М	two propellers	batteries	
ASMV	2007	USA	FIT	2.13	0.91	176	1.2	7.5h	М	two propellers	batteries	
0 10 1	2007	D (1	University	4.5	2.2	100	2	(1	6		1	[104]
Swordfish	2007	Portugal	of Porto	4.5	2.2	190	2	6h	C	two thrusters	batteries	[104]
Zarco	2007	Portugal	of Porto	1.5		50	1.5	6-10h	C	two thrusters	batteries	
Fast	2008	Portugal	of Porto	2.5	0.67				М	two sails	wind, solar	
ALANIS	2009	Italy	CNR-ISSIA	4.5	2.2	600		12h	M	two servo motors	batteries	
ASV	2009	Australia	CSIRO	4.88			2.8		С	two trolling motors	solar	[105]
USV	2009	China	SMU	2.7	1.48	60	3.1	2h	С	two propellers	batteries	
Nereus	2009	USA	FAU	1.7	0.21		2		С	four propellers	batteries	
Miner Clinter	2000	LIC A	Liquid	0.1	0.0	75	0.0	1	м	wave energy	wave energy	[10/] [100]
wave Glider	2009	USA	Robotics	2.1	0.6	/5	0.8	Tyear	M	converter	solar	[106]-[108]
WASP	2009	USA	UMiami	4.2	0.8	50	2.6		М	a sail	wind, solar	
ASV	2010	USA	USC	2.1	0.7	48	1.5		С	two thrusters	batteries	[109], [110]
SOTOB II	2012	Japan	Osaka University	2.64	0.76	60	2	1week	М	a sail	wind, solar	[111], [112]
ASC	2013	Canada	MUN	1.5	1	146	1		С	two propellers	batteries	
0.1.1	0010	D . 1	University						6			
Squirtle	2013	Portugal	of Coimbra						C	two motors	solar	
ASB	2013	France	UPMC						М	a sail	wind, solar	
WHOI	2014	USA	WHOI	3.35		135	5.5	8-10h	М	waterjet	gasoline	
HydroNet	2014	Italy	SSSUP	1.99	1.16	82.8	1	10h	С	two propellers	batteries	
SMIS-USV	2015	Germany	University of Rostock					7days	М	propeller	batteries	
mini-USV	2016	China	HUST	1.33	0.33	51	31		М	propeller	batteries	
BUSCAMOS	2016	Spain	UPCT	51	0.00	1.97	0.1	6h	M	two propellers	solar diesel	
USV	2016	Spain	LITB	13		1.77		011	M	two motors	solui, diesei	
ASV	2016	Malaysia	USM	0.4	0.4	53	1	0.5h	M	two wateriets	hatteries	
USV	2016	China	SIA CAS	2.8	0.1	0.0	10	2h	M	wateriet	batteries	
LICAP	2016	Protugal	INESC TEC	1.5	0.7	25	2	1h	M	wateriet	batteries	
PlaDyPos	2017	Croatia	University	1		30	1	m	M	four thrusters	butterieb	
JingHai-I	2017	China	Shanghai	6.28	2.86	2300	9.3	5h	М	wateriet	diesel	
, ,	0015	01.1	University	1.0	0.4	24.0			0		1 1	
057	2017	UCA		1.9	0.4	34.3	11	21		a sail, two thrusters	solar, wind	
Koboat	2018	USA	MII	0.9	0.45	9.2	1.1	2n	M	rour thrusters	batteries	
057	2019	Oman	University of	0.9		15	1			two propellers	Datteries	
Jetskins	2019	France	La Rochelle	1.8	0.66	28	1.5	10h	М	four motors	batteries	
USV	2019	Philippines	CARSU	1.5	1	40	0.5		C	propeller	batteries	
Roboat II	2020	USA	MIT	2.0	1.0	80	2.0	2h	M	four thrusters	batteries	
Catabot	2020	USA	Dartmouth College	2.4	1.4	25			С	two propellers	batteries	
ASV	2020	Korea	KRISŎ	4.1	2.4		3.3		С	two thrusters	batteries	
VIAM-USV2000	2021	Vietnam	HCMUT	2	1	150	2.1	3h	С	6 thrusters	batteries	

TABLE B.2: Overview of Commercial and Research ASV projects II

Note: 1.Because all the prototypes have power supplied by batteries, "batteries" here denotes batteries are the only power. **Dimension**: L: Length, W: Width **Type**: M: Monohull, C: Catamaran **Parameter**: Sp: Speed, Wt: Weight, En: Endurance

REFERENCES

- M. Caccia, "Autonomous surface craft: prototypes and basic research issues," in 2006 IEEE 14th Mediterranean Conference on Control and Automation, June 2006, pp. 1–6.
- [2] V. Bertram, "Unmanned surface vehicles-a survey," Skibsteknisk Selskab, Copenhagen, Denmark, vol. 1, pp. 1–14, 2008.
- [3] J. E. Manley, "Unmanned surface vehicles, 15 years of development," in *IEEE OCEANS 2008*, September 2008, pp. 1–4.
- [4] P. F. Rynne and K. D. von Ellenrieder, "Unmanned autonomous sailing: Current status and future role in sustained ocean observations," *Marine Technology Society Journal*, vol. 43, no. 1, pp. 21–30, 2009.
- [5] R.-j. Yan, S. Pang, H.-b. Sun, and Y.-j. Pang, "Development and missions of unmanned surface vehicle," *Journal of Marine Science* and Application, vol. 9, no. 4, pp. 451–457, 2010.
- [6] H. Ashrafiuon, K. R. Muske, and L. C. McNinch, "Review of nonlinear tracking and setpoint control approaches for autonomous underactuated marine vehicles," in *Proceedings of the 2010 American Control Conference*, June 2010, pp. 5203–5211.
- [7] R. Stelzer and K. Jafarmadar, "History and recent developments in robotic sailing," in *Robotic Sailing*. Springer, 2011, pp. 3–23.
 [8] S. Campbell, W. Naeem, and G. W. Irwin, "A review on im-
- [8] S. Campbell, W. Naeem, and G. W. Irwin, "A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres," *Annual Reviews in Control*, vol. 36, no. 2, pp. 267–283, 2012.
- [9] H. Zheng, R. R. Negenborn, and G. Lodewijks, "Survey of approaches for improving the intelligence of marine surface vehicles," in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013, pp. 1217–1223.
- [10] E. Othman, "A review on current design of unmanned surface vehicles (usvs)," J. Adv. Rev. Sci. Res, vol. 16, pp. 12–17, 2015.
- [11] M. Azzeri, F. Adnan, and M. Zain, "Review of course keeping control system for unmanned surface vehicle," *Jurnal Teknologi*, vol. 74, no. 5, pp. 11–20, 2015.
- [12] J. E. Manley, "Unmanned maritime vehicles, 20 years of commercial and technical evolution," in OCEANS 2016 MTS/IEEE Monterey, September 2016, pp. 1–6.
- [13] Z. Liu, Y. Zhang, X. Yu, and C. Yuan, "Unmanned surface vehicles: An overview of developments and challenges," *Annual Reviews in Control*, vol. 41, pp. 71–93, 2016.
- [14] M. Schiaretti, L. Chen, and R. R. Negenborn, "Survey on autonomous surface vessels: Part i-a new detailed definition of autonomy levels," in *International Conference on Computational Logistics*. Springer, 2017, pp. 219–233.
- [15] —, "Survey on autonomous surface vessels: Part iicategorization of 60 prototypes and future applications," in *International Conference on Computational Logistics*. Springer, 2017, pp. 234–252.
- [16] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek, "Video processing from electro-optical sensors for object detection and tracking in a maritime environment: a survey," *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 8, pp. 1993–2016, 2017.
- [17] Y. Liu and R. Bucknall, "A survey of formation control and motion planning of multiple unmanned vehicles," *Robotica*, vol. 36, no. 7, pp. 1019–1047, 2018.
- [18] L. E. van Cappelle, L. Chen, and R. R. Negenborn, "Survey on short-term technology developments and readiness levels for autonomous shipping," in *International Conference on Computational Logistics*. Springer, 2018, pp. 106–123.
- [19] J. Ge, T. Li, and T. Geng, "The wireless communications for unmanned surface vehicle: An overview," in *International Conference* on *Intelligent Robotics and Applications*. Springer, 2018, pp. 113– 119.
- [20] E. Zereik, M. Bibuli, N. Mišković, P. Ridao, and A. Pascoal, "Challenges and future trends in marine robotics," *Annual Reviews in Control*, vol. 46, pp. 350–368, 2018.
- [21] R. Polvara, S. Sharma, J. Wan, A. Manning, and R. Sutton, "Obstacle avoidance approaches for autonomous navigation of unmanned surface vehicles," *The Journal of Navigation*, vol. 71, no. 1, pp. 241–256, 2018.
- [22] H. I. Moud, A. Shojaei, and I. Flood, "Current and future applications of unmanned surface, underwater, and ground vehicles in construction," in *Proceedings of the Construction Research Congress*, April 2018, pp. 106–115.

- [23] A. Zolich, D. Palma, K. Kansanen, K. Fjørtoft, J. Sousa, K. H. Johansson, Y. Jiang, H. Dong, and T. A. Johansen, "Survey on communication and networks for autonomous marine systems," *Journal of Intelligent & Robotic Systems*, vol. 95, no. 3-4, pp. 789–813, 2019.
- [24] A. L. Ellefsen, V. Æsøy, S. Ushakov, and H. Zhang, "A comprehensive survey of prognostics and health management based on deep learning for autonomous ships," *IEEE Transactions on Reliability*, vol. 68, no. 2, pp. 720–740, 2019.
- [25] U. K. Verfuss, A. S. Aniceto, D. V. Harris, D. Gillespie, S. Fielding, G. Jiménez, P. Johnston, R. R. Sinclair, A. Sivertsen, S. A. Solbø et al., "A review of unmanned vehicles for the detection and monitoring of marine fauna," *Marine pollution bulletin*, vol. 140, pp. 17–29, 2019.
- [26] V. A. Jorge, R. Granada, R. G. Maidana, D. A. Jurak, G. Heck, A. P. Negreiros, D. H. Dos Santos, L. M. Gonçalves, and A. M. Amory, "A survey on unmanned surface vehicles for disaster robotics: Main challenges and directions," *Sensors*, vol. 19, no. 3, p. 702, 2019.
- [27] Z. H. Munim, "Autonomous ships: a review, innovative applications and future maritime business models," *Supply Chain Forum: An International Journal*, vol. 20, no. 4, pp. 266–279, 2019.
- [28] X. Wang, X. Song, and L. Du, "Review and application of unmanned surface vehicle in china," in 2019 5th International Conference on Transportation Information and Safety (ICTIS), July 2019, pp. 1476–1481.
- [29] F. Thompson and D. Guihen, "Review of mission planning for autonomous marine vehicle fleets," *Journal of Field Robotics*, vol. 36, no. 2, pp. 333–354, 2019.
- [30] M. F. Silva, A. Friebe, B. Malheiro, P. Guedes, P. Ferreira, and M. Waller, "Rigid wing sailboats: A state of the art survey," *Ocean Engineering*, vol. 187, p. 106150, 2019.
- [31] L. Wang, Q. Wu, J. Liu, S. Li, and R. R. Negenborn, "State-of-theart research on motion control of maritime autonomous surface ships," *Journal of Marine Science and Engineering*, vol. 7, no. 12, p. 438, 2019.
- [32] Y. Huang, L. Chen, P. Chen, R. R. Negenborn, and P. van Gelder, "Ship collision avoidance methods: State-of-the-art," *Safety Science*, vol. 121, pp. 451–473, 2020.
- [33] W. Jing, C. Liu, T. Li, A. M. Rahman, L. Xian, X. Wang, Y. Wang, Z. Guo, G. Brenda, and K. W. Tendai, "Path planning and navigation of oceanic autonomous sailboats and vessels: A survey," *Journal of Ocean University of China*, vol. 19, pp. 609–621, 2020.
- [34] C. Zhou, S. Gu, Y. Wen, Z. Du, C. Xiao, L. Huang, and M. Zhu, "The review unmanned surface vehicle path planning: Based on multi-modality constraint," *Ocean Engineering*, vol. 200, p. 107043, 2020.
- [35] Z. Peng, J. Wang, D. Wang, and Q.-L. Han, "An overview of recent advances in coordinated control of multiple autonomous surface vehicles," *IEEE Transactions on Industrial Informatics*, 2020.
- [36] L. Chen, R. Negenborn, Y. Huang, and H. Hopman, "Survey on cooperative control for waterborne transport," *IEEE Intelligent Transportation Systems Magazine*, vol. 13, no. 2, pp. 71–90, 2020.
- [37] X. Zhang, C. Wang, L. Jiang, L. An, and R. Yang, "Collisionavoidance navigation systems for maritime autonomous surface ships: A state of the art survey," *Ocean Engineering*, vol. 235, p. 109380, 2021.
- [38] H. R. Karimi and Y. Lu, "Guidance and control methodologies for marine vehicles: A survey," *Control Engineering Practice*, vol. 111, p. 104785, 2021.
- [39] A. Vagale, R. Oucheikh, R. T. Bye, O. L. Osen, and T. I. Fossen, "Path planning and collision avoidance for autonomous surface vehicles i: a review," *Journal of Marine Science and Technology*, pp. 1–15, 2021.
- [40] S. Thombre, Z. Zhao, H. Ramm-Schmidt, J. M. V. García, T. Malkamäki, S. Nikolskiy, T. Hammarberg, H. Nuortie, M. Z. H. Bhuiyan, S. Särkkä *et al.*, "Sensors and ai techniques for situational awareness in autonomous ships: A review," *IEEE Transactions on Intelligent Transportation Systems*, 2021.
- [41] N. Gu, D. Wang, Z. Peng, J. Wang, and Q.-L. Han, "Advances in line-of-sight guidance for path following of autonomous marine vehicles: An overview," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2022.
- [42] T. W. Vaneck, C. D. RODRIGUEZ-ORTIZ, M. C. Schmidt, and J. E. Manley, "Automated bathymetry using an autonomous surface craft," *Navigation*, vol. 43, no. 4, pp. 407–419, 1996.

- [43] J. E. Manley, "Development of the autonomous surface craft 'aces'," in *Proceeding of IEEE/MTS Oceans*'97, vol. 2, 1997, pp. 827– 832.
- [44] C. A. Goudey, T. Consi, J. Manley, M. Graham et al., "A robotic boat for autonomous fish tracking," *Marine Technology Society*. *Marine Technology Society Journal*, vol. 32, no. 1, p. 47, 1998.
- [45] J. E. Manley, A. Marsh, W. Cornforth, and C. Wiseman, "Evolution of the autonomous surface craft autocat," in *Proceeding of IEEE/MTS Oceans'00*, vol. 1, September 2000, pp. 403–408.
- [46] J. Majohr, T. Buch, and C. Korte, "Navigation and automatic control of the measuring dolphin (messin[™])," *IFAC Proceedings Volumes*, vol. 33, no. 21, pp. 399–404, 2000.
- [47] A. Leonessa, J. Mandello, Y. Morel, and M. Vidal, "Design of a small, multi-purpose, autonomous surface vessel," in *Proceeding* of IEEE OCEANS 2003, vol. 1, September 2003, pp. 544–550.
- [48] J. Curcio, J. Leonard, and A. Patrikalakis, "Scout-a low cost autonomous surface platform for research in cooperative autonomy," in *Proceedings of IEEE/MTS OCEANS 2005*, September 2005, pp. 725–729.
- [49] M. Caccia, M. Bibuli, R. Bono, G. Bruzzone, G. Bruzzone, and E. Spirandelli, "Unmanned surface vehicle for coastal and protected waters applications: The charlie project," *Marine Technology Society Journal*, vol. 41, no. 2, pp. 62–71, 2007.
- [50] J. R. Higinbotham, P. G. Hitchener, and J. R. Moisan, "Development of a new long duration solar powered autonomous surface vehicle," in *Proceeding of IEEE OCEANS 2006*, September 2006, pp. 1–6.
- [51] J. R. Higinbotham, J. R. Moisan, C. Schirtzinger, M. Linkswiler, J. Yungel, and P. Orton, "Update on the development and testing of a new long duration solar powered autonomous surface vehicle," in *Proceeding of IEEE OCEANS 2008*, September 2008, pp. 1–10.
- [52] A. Subramanian, X. Gong, J. N. Riggins, D. J. Stilwell, and C. L. Wyatt, "Shoreline mapping using an omni-directional camera for autonomous surface vehicle applications," in *Proceeding of IEEE* OCEANS 2006, September 2006, pp. 1–6.
- [53] W. Naeem, R. Sutton, and J. Chudley, "Modelling and control of an unmanned surface vehicle for environmental monitoring," in UKACC International Control Conference, 2006, pp. 1–6.
- [54] G. H. Elkaim, "The atlantis project: A gps-guided wing-sailed autonomous catamaran," *Navigation*, vol. 53, no. 4, pp. 237–247, 2006.
- [55] J. Alves, P. Oliveira, R. Oliveira, A. Pascoal, M. Rufino, L. Sebastiao, and C. Silvestre, "Vehicle and mission control of the delfim autonomous surface craft," in 2006 IEEE 14th Mediterranean Conference on Control and Automation, June 2006, pp. 1–6.
- [56] H. Ferreira, A. Martins, A. Dias, C. Almeida, J. M. Almeida, and E. P. Silva, "Roaz autonomous surface vehicle design and implementation," *Robótica Controlo, Automação, instrumentação*, 2007.
- [57] A. Martins, H. Ferreira, C. Almeida, H. Silva, J. M. Almeida, and E. Silva, "Roaz and roaz ii autonomous surface vehicle design and implementation," in *International Lifesaving Congress* 2007, 2007.
- [58] E. Desa, P. K. Maurya, A. Pereira *et al.*, "A small autonomous surface vehicle for ocean color remote sensing," *IEEE Journal of Oceanic Engineering*, vol. 32, no. 2, pp. 353–364, 2007.
- [59] S. Wood, M. Rees, and Z. Pfeiffer, "An autonomous self-mooring vehicle for littoral & coastal observations," in *IEEE OCEANS* 2007, June 2007, pp. 1–6.
- [60] H. Ferreira, R. Martins, E. Marques, J. Pinto, A. Martins, J. Almeida, J. Sousa, and E. Silva, "Swordfish: an autonomous surface vehicle for network centric operations," in *IEEE Oceans* 2007, June 2007, pp. 1–6.
- [61] N. Cruz, A. Matos, S. Cunha, and S. O. da Silva, "Zarco-an autonomous craft for underwater surveys," 7th Geomatic Week, 2007.
- [62] J. C. Alves and N. A. Cruz, "Fast-an autonomous sailing platform for oceanographic missions," in *IEEE OCEANS 2008*, September 2008, pp. 1–7.
- [63] M. Caccia, M. Bibuli, R. Bono, G. Bruzzone, G. Bruzzone, and E. Spirandelli, "Aluminum hull usv for coastal water and seafloor monitoring," in *IEEE OCEANS* 2009, May 2009, pp. 1–5.
- [64] M. Dunbabin, A. Grinham, and J. Udy, "An autonomous surface vehicle for water quality monitoring," in *Australasian Conference* on Robotics and Automation (ACRA). Citeseer, December 2009, pp. 2–4.

- [65] J. Wang, W. Gu, J. Zhu, and J. Zhang, "An unmanned surface vehicle for multi-mission applications," in 2009 IEEE International Conference on Electronic Computer Technology, February 2009, pp. 358–361.
- [66] T. C. Furfaro, J. E. Dusek, and K. D. von Ellenrieder, "Design, construction, and initial testing of an autonomous surface vehicle for riverine and coastal reconnaissance," in *IEEE OCEANS 2009*, October 2009, pp. 1–6.
- [67] R. Hine, S. Willcox, G. Hine, and T. Richardson, "The wave glider: A wave-powered autonomous marine vehicle," in *IEEE OCEANS* 2009, October 2009, pp. 1–6.
- [68] P. F. Rynne and K. D. von Ellenrieder, "Development and preliminary experimental validation of a wind-and solar-powered autonomous surface vehicle," *IEEE Journal of Oceanic Engineering*, vol. 35, no. 4, pp. 971–983, 2010.
- [69] F. Arrichiello, H. Heidarsson, S. Chiaverini, and G. S. Sukhatme, "Cooperative caging using autonomous aquatic surface vehicles," in 2010 IEEE International Conference on Robotics and Automation, May 2010, pp. 4763–4769.
- [70] H. Senga, N. Kato, H. Suzuki, T. Akamatsu, L. Yu, M. Yoshie, and T. Tanaka, "Field experiments and new design of a spilled oil tracking autonomous buoy," *Journal of Marine Science and Technology*, vol. 19, no. 1, pp. 90–102, 2014.
 [71] Z. Li and R. Bachmayer, "The development of a robust au-
- [71] Z. Li and R. Bachmayer, "The development of a robust autonomous surface craft for deployment in harsh ocean environment," in 2013 IEEE OCEANS, September 2013, pp. 1–7.
- [72] J. Fraga, J. Sousa, G. Cabrita, P. Coimbra, and L. Marques, "Squirtle: An asv for inland water environmental monitoring," in *ROBOT2013: First Iberian Robotics Conference*. Springer, 2014, pp. 33–39.
- [73] F. Plumet, C. Pêtrès, M.-A. Romero-Ramirez, B. Gas, and S.-H. Ieng, "Toward an autonomous sailing boat," *IEEE Journal of Oceanic Engineering*, vol. 40, no. 2, pp. 397–407, 2014.
- [74] P. Kimball, J. Bailey, S. Das et al., "The whoi jetyak: An autonomous surface vehicle for oceanographic research in shallow or dangerous waters," in 2014 IEEE/OES Autonomous Underwater Vehicles (AUV), October 2014, pp. 1–7.
- [75] G. Ferri, A. Manzi, F. Fornai, B. Mazzolai, C. Laschi, F. Ciuchi, and P. Dario, "Design, fabrication and first sea trials of a smallsized autonomous catamaran for heavy metals monitoring in coastal waters," in 2011 IEEE International Conference on Robotics and Automation, May 2011, pp. 2406–2411.
- [76] G. Ferri, A. Manzi, F. Fornai, F. Ciuchi, and C. Laschi, "The hydronet asv, a small-sized autonomous catamaran for real-time monitoring of water quality: From design to missions at sea," *IEEE Journal of Oceanic Engineering*, vol. 40, no. 3, pp. 710–726, 2014.
- [77] E. Rentzow, D. Dewitz, M. Kurowski, B. P. Lampe, S. Ritz, R. Kutz, M. Golz, and F. Boeck, "Design and automation of an ocean-going autonomously acting usv," in *IEEE OCEANS* 2015, May 2015, pp. 1–6.
- [78] H. Liu, S. Gan, J. Zhang, and X. Xiang, "Control system of a mini-asv prototype: Design and implementation," in 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), December 2016, pp. 110–114.
- [79] A. Guerrero-González, F. García-Córdova, F. J. Ortiz, D. Alonso, and J. Gilabert, "A multirobot platform based on autonomous surface and underwater vehicles with bio-inspired neurocontrollers for long-term oil spills monitoring," *Autonomous Robots*, vol. 40, no. 7, pp. 1321–1342, 2016.
- [80] J. Villa, J. Paez, C. Quintero, E. Yime, and J. Cabrera, "Design and control of an unmanned surface vehicle for environmental monitoring applications," in 2016 IEEE Colombian Conference on Robotics and Automation (CCRA), September 2016, pp. 1–5.
- [81] M. Majid and M. Arshad, "Design of an autonomous surface vehicle (asv) for swarming application," in 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), November 2016, pp. 230– 235.
- [82] J. Xiong, F. Gu, D. Li, Y. He, and J. Han, "Design, implementation and modeling of flooding disaster-oriented usv," *Recent Advances* in *Robotic Systems*, pp. 27–46, 2016.
- [83] J. Zhang, J. Xiong, G. Zhang, F. Gu, and Y. He, "Flooding disaster oriented usv & uav system development & demonstration," in *IEEE OCEANS 2016*, April 2016, pp. 1–4.
- [84] B. M. Ferreira, A. C. Matos, and J. C. Alves, "Water-jet propelled autonomous surface vehicle ucap: System description and control," in *IEEE OCEANS 2016*, April 2016, pp. 1–5.

- [85] A. Vasilijević, . Na, F. Mandić, N. Mišković, and Z. Vukić, "Coordinated navigation of surface and underwater marine robotic vehicles for ocean sampling and environmental monitoring," *IEEE/ASME Transactions on Mechatronics*, vol. 22, no. 3, pp. 1174– 1184, 2017.
- [86] Y. Peng, Y. Yang, J. Cui, X. Li, H. Pu, J. Gu, S. Xie, and J. Luo, "Development of the usv 'jinghai-i'and sea trials in the southern yellow sea," *Ocean Engineering*, vol. 131, pp. 186–196, 2017.
- [87] X. Zhou, L. Ling, J. Ma, H. Tian, Q. Yan, G. Bai, S. Liu, and L. Dong, "The design and application of an unmanned surface vehicle powered by solar and wind energy," in 2015 IEEE 6th international conference on power electronics systems and applications (PESA), December 2015, pp. 1–10.
- [88] W. Wang, L. A. Mateos, S. Park, P. Leoni, B. Gheneti, F. Duarte, C. Ratti, and D. Rus, "Design, modeling, and nonlinear model predictive tracking control of a novel autonomous surface vehicle," in 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018, pp. 6189–6196.
- [89] W. Al Maawali, A. Al Naabi, M. Al Yaruubi, A. Saleem, and A. Al Maashri, "Design and implementation of an unmanned surface vehicle for oil spill handling," in 2019 IEEE 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), February 2019, pp. 1–6.
- [90] A. Gaugue, M. Menard, E. Migot, P. Bourcier, and C. Gaschet, "Development of an aquatic usv with high communication capability for environmental surveillance," in *IEEE OCEANS 2019*, June 2019, pp. 1–8.
- [91] A. T. Demetillo and E. B. Taboada, "Real-time water quality monitoring for small aquatic area using unmanned surface vehicle," *Engineering, Technology & Applied Science Research*, vol. 9, no. 2, pp. 3959–3964, 2019.
- [92] W. Wang, T. Shan, P. Leoni, D. Fernández-Gutiérrez, D. Meyers, C. Ratti, and D. Rus, "Roboat ii: A novel autonomous surface vessel for urban environments," in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 1740–1747.
- [93] M. Jeong, M. Roznere, S. Lensgraf, A. Sniffen, D. Balkcom, and A. Q. Li, "Catabot: Autonomous surface vehicle with an optimized design for environmental monitoring," in *Global Oceans* 2020: Singapore–US Gulf Coast. IEEE, 2020, pp. 1–9.
- [94] J. Choi, J. Park, J. Jung, Y. Lee, and H.-T. Choi, "Development of an autonomous surface vehicle and performance evaluation of autonomous navigation technologies," *International Journal of Control, Automation and Systems*, vol. 18, no. 3, pp. 535–545, 2020.
- [95] N.-H. Tran, Q.-H. Pham, J.-H. Lee, and H.-S. Choi, "Viamusv2000: An unmanned surface vessel with novel autonomous capabilities in confined riverine environments," *Machines*, vol. 9, no. 7, p. 133, 2021.
- [96] J. E. Manley and T. W. Vaneck, "High fidelity hydrographic surveys using and autonomous surface craft," Ph.D. dissertation, Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1998.
- [97] J. Curcio, J. Leonard, J. Vaganay, A. Patrikalakis, A. Bahr, D. Battle, H. Schmidt, and M. Grund, "Experiments in moving baseline navigation using autonomous surface craft," in *Proceedings of IEEE/MTS OCEANS 2005*, September 2005, pp. 730–735.
- [98] M. Caccia, G. Bruzzone, and R. Bono, "Modelling and identification of the charlie2005 asc," in 2006 IEEE 14th Mediterranean Conference on Control and Automation, June 2006, pp. 1–6.
- [99] —, "A practical approach to modeling and identification of small autonomous surface craft," *IEEE Journal of Oceanic Engineering*, vol. 33, no. 2, pp. 133–145, 2008.
- [100] G. Bruzzone, G. Bruzzone, M. Bibuli, and M. Caccia, "Autonomous mine hunting mission for the charlie usv," in *IEEE* OCEANS 2011, June 2011, pp. 1–6.
- [101] G. W. Podnar, J. M. Dolan, A. Elfes, S. Stancliff, E. Lin, J. C. Hosler, T. J. Ames, J. Moisan, T. A. Moisan, J. Higinbotham et al., "Operation of robotic science boats using the telesupervised adaptive ocean sensor fleet system," in 2008 IEEE International Conference on Robotics and Automation, May 2008, pp. 1061–1068.
- [102] A. Martins, J. M. Almeida, H. Ferreira, H. Silva, N. Dias, A. Dias, C. Almeida, and E. Silva, "Autonomous surface vehicle docking manoeuvre with visual information," in *Proceedings 2007 IEEE International Conference on Robotics and Automation*, April 2007, pp. 4994–4999.
- [103] H. Ferreira, C. Almeida, A. Martins, J. Almeida, N. Dias, A. Dias, and E. Silva, "Autonomous bathymetry for risk assessment with

roaz robotic surface vehicle," in *IEEE Oceans* 2009, May 2009, pp. 1–6.

- [104] H. Ferreira, R. Martins, E. Marques, J. Pinto, A. Martins, J. Almeida, J. Sousa, and E. Silva, "Marine operations with the swordfish autonomous surface vehicle," in *IEEE Robótica* 2007-7th Conference on Mobile Robots and Competitions, 2007.
- [105] M. Dunbabin and A. Grinham, "Experimental evaluation of an autonomous surface vehicle for water quality and greenhouse gas emission monitoring," in 2010 IEEE International Conference on Robotics and Automation, May 2010, pp. 5268–5274.
- [106] J. Manley and S. Willcox, "The wave glider: A persistent platform for ocean science," in *IEEE OCEANS'10*, May 2010, pp. 1–5.
- [107] T. Daniel, J. Manley, and N. Trenaman, "The wave glider: enabling a new approach to persistent ocean observation and research," *Ocean Dynamics*, vol. 61, no. 10, pp. 1509–1520, 2011.
- [108] P. J. Fitzpatrick, Y. Lau, R. Moorhead, A. Skarke, D. Merritt, K. Kreider, C. Brown, R. Carlon, G. Hine, T. Lampoudi et al., "A review of the 2014 gulf of mexico wave glider® field program," *Marine Technology Society Journal*, vol. 49, no. 3, pp. 64–71, 2015.
- [109] S. Bhattacharya, H. Heidarsson, G. S. Sukhatme, and V. Kumar, "Cooperative control of autonomous surface vehicles for oil skimming and cleanup," in 2011 IEEE International Conference on Robotics and Automation, May 2011, pp. 2374–2379.
- [110] F. Arrichiello, H. K. Heidarsson, S. Chiaverini, and G. S. Sukhatme, "Cooperative caging and transport using autonomous aquatic surface vehicles," *Intelligent Service Robotics*, vol. 5, no. 1, pp. 73–87, 2012.
- [111] S. S. Rathour, N. Kato, N. Tanabe, H. Senga, Y. Hirai, M. Yoshie, and T. Tanaka, "Spilled oil autonomous tracking using autonomous sea surface vehicle," *Marine Technology Society Journal*, vol. 49, no. 3, pp. 102–116, 2015.
- [112] S. Rathour, N. Kato, H. Senga, T. Tanabe, M. Yoshie, and T. Tanaka, "Development of a robotic floating buoy for autonomously tracking oil slicks drifting on the sea surface (sotabii): Experimental results," in *Applications to Marine Disaster Prevention.* Springer, 2017, pp. 95–127.