APPENDIX A: COMPARISON OF EXISTING SURVEY REGARDING ASVS

TABLE A.1: Comparison of existing survey regarding ASVs.

<table>
<thead>
<tr>
<th>Surveys</th>
<th>Publish Year</th>
<th>Focus</th>
<th>P</th>
<th>N</th>
<th>G</th>
<th>C</th>
<th>R</th>
<th>N&C</th>
<th>Co</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caccia [1]</td>
<td>2006</td>
<td>Recently developed autonomous surface crafts, the research, and legal issues.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Yan et al. [5]</td>
<td>2010</td>
<td>The applications, developments, and challenges of Navy ASVs.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ashrafzaiion et al. [6]</td>
<td>2010</td>
<td>The development of set-point, trajectory tracking, and path following control algorithms and methodologies for autonomous underactuated marine vehicles.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Campbell et al. [8]</td>
<td>2012</td>
<td>The ASVs prototypes, subsystems, and N&C, especially how to comply with COLREGs guidelines.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Azzari et al. [11]</td>
<td>2015</td>
<td>The review of research work on control system approaches of ASVs, especially the course keeping control.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Manley</td>
<td>2016</td>
<td>The reviews of sub-component technology and developments for unmanned maritime vehicles system over the past 20 years.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Liu et al. [13]</td>
<td>2016</td>
<td>A comprehensive survey about the existing ASV prototypes, and N&C methods, along with their applications, methodologies, and challenges.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Schiaretti et al. [14]</td>
<td>2017</td>
<td>Definition and categorization of autonomy levels for autonomous surface vessels.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Prasad et al. [16]</td>
<td>2017</td>
<td>A comprehensive overview of various approaches of video processing for object detection and tracking in the maritime environment.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Liu et al. [17]</td>
<td>2018</td>
<td>Techniques related to the operation of multi-vehicle systems in different environmental domains.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cappelle et al. [18]</td>
<td>2018</td>
<td>Technology developments related to autonomous shipping and their technology readiness level.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lee [19]</td>
<td>2018</td>
<td>Wireless communication techniques for ASVs.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zerek et al. [20]</td>
<td>2018</td>
<td>The present status of marine robotics and their applications.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polvaza et al. [21]</td>
<td>2018</td>
<td>Collision detection and path planning methods for ASVs.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Moud et al. [22]</td>
<td>2018</td>
<td>Wireless communication techniques for ASVs.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zolich et al. [23]</td>
<td>2019</td>
<td>Communication and networking technologies that could help the integration of autonomous systems in maritime scenarios.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Jorge et al. [26]</td>
<td>2019</td>
<td>Applications and roles of ASVs for Disaster Management.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Wang et al. [28]</td>
<td>2019</td>
<td>Development and application related to ASV in China.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Thompson et al. [29]</td>
<td>2019</td>
<td>Current advances in automated planning for autonomous marine vehicle fleets.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Silva et al. [30]</td>
<td>2019</td>
<td>Developments of rigid wing sailboats in terms of hardware and software.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Wang et al. [31]</td>
<td>2019</td>
<td>Motion control of MASS.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Huang et al. [32]</td>
<td>2020</td>
<td>Collision prevention techniques based on motion and conflict detection, and conflict resolution both for manned and unmanned ships.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Jing et al. [33]</td>
<td>2020</td>
<td>Path planning and navigation methods for autonomous vessels and sailboats.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zhou et al. [34]</td>
<td>2020</td>
<td>The path planning of multi-modality constraint research including Route Planning, Trajectory Planning and Motion Planning.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Peng et al. [35]</td>
<td>2020</td>
<td>Recent advances and challenges in coordinated control of multiple ASVs.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chen et al. [36]</td>
<td>2020</td>
<td>A comprehensive overview on cooperative control methods for waterborne transport.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zhang et al. [37]</td>
<td>2021</td>
<td>The major advancements in maritime collision avoidance navigation technologies applied in different scenarios, from transportation to scientific research.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Karimi et al. [38]</td>
<td>2021</td>
<td>Recent developments on guidance and control methods for marine robotic vehicles.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Abrdeo et al. [40]</td>
<td>2021</td>
<td>State-of-the-art in situational awareness for autonomous vessels.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gu et al. [41]</td>
<td>2022</td>
<td>Overview of recent advances in LOS guidance for path following.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Our Work</td>
<td>2022</td>
<td>A comprehensive survey about application of DL methods on NGC system of ASVs and maritime cooperative operations, as well as their challenges.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The symbol ✓ marks publications that discuss the topic in detail; + indicates corresponding scope is briefly mentioned instead of careful investigation. "P" is for prototypes or projects: including the physical ASV prototypes and their hardware, software and applications, or the projects that develop these prototypes; "G" is for Guidance; "N" is for Navigation; "C" is for Control; "R" is for rules or regulations, e.g., the effect to comply with COLREGs guidelines; "N&C" is for Networking and Communications; "Co" refers to cooperation between multi-vehicles; "DL" is for deep learning.
APPENDIX B: OVERVIEW OF COMMERCIAL AND RESEARCH ASV PROJECTS

TABLE B.1: Overview of Commercial and Research ASV projects I

<table>
<thead>
<tr>
<th>Prototype</th>
<th>Name</th>
<th>Sensors</th>
<th>Navigation</th>
<th>Guidance</th>
<th>Control</th>
<th>COMM.</th>
<th>Purpose</th>
<th>REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTEMIS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>DR</td>
<td>fuzzy controller</td>
<td>rudder</td>
<td>radio</td>
<td>data collection</td>
</tr>
<tr>
<td>ACES</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>PID</td>
<td>rudder</td>
<td>radio</td>
<td>data collection</td>
</tr>
<tr>
<td>Kayak</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>PID</td>
<td>rudder</td>
<td>radio</td>
<td>fish tracking</td>
</tr>
<tr>
<td>Autec</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NOMOTO</td>
<td>rudder</td>
<td>UHF</td>
<td>measuring tasks</td>
</tr>
<tr>
<td>MESSIN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>EKF</td>
<td>✓</td>
<td>✓</td>
<td>test platform</td>
</tr>
<tr>
<td>SCOUT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>PID</td>
<td>✓</td>
<td>✓</td>
<td>test platform</td>
</tr>
<tr>
<td>Cursive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>PI</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>OASIS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>AVY</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>UKF</td>
<td>EKF/RJA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Springer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>OKID</td>
<td>GA-MPC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Atlantis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>GA-MPC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dallin²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>test platform</td>
</tr>
<tr>
<td>ROAZ²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ROAZ³</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ROAZIV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>Swordfish</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>Zeroo</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>Fast</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ALANIS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>USV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>Nereus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>Wave Glider</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>WASI²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
<tr>
<td>ASV²</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>data collection</td>
</tr>
</tbody>
</table>

Notes:
1. Cooperation with AUV
2. Cooperation with UAV

Navigation:

Control:
- HA: Hybrid Automation, NMPC: Nonlinear Model Predictive Control, DT: Differential Thrust

Algorithm:
- DR: Dead-Recteckoning, Kalman Filter, EKF: Extended Kalman Filter, UKF: Unscented Kalman Filter, RA: Radial Analysis

Approach:
- OKID: Observer/Kalman System Identification, EBD: Edge and Blob Detection, FSM: Finite State Machines, CC: Colorimetric Criteria

Based Algorithm:

SODMN: Self Organization Direction Mapping Network, VGA: Visibility Graph Algorithm, GA: Genetic Algorithm, NMHE: Nonlinear Moving Horizon Estimation
TABLE B.2: Overview of Commercial and Research ASV projects II

<table>
<thead>
<tr>
<th>Prototype</th>
<th>Name</th>
<th>Institution</th>
<th>Year</th>
<th>Country</th>
<th>Year</th>
<th>Type</th>
<th>Components</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTEMIS</td>
<td>1996</td>
<td>USA</td>
<td>1.4</td>
<td>MIT</td>
<td>0.4</td>
<td>M</td>
<td>a thruster motor</td>
<td>batteries</td>
</tr>
<tr>
<td>variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARTEMIS</td>
<td>1997</td>
<td>USA</td>
<td>1.8</td>
<td>MIT</td>
<td>1.3</td>
<td>M</td>
<td>a thruster motor</td>
<td>batteries</td>
</tr>
<tr>
<td>Kayak</td>
<td>1998</td>
<td>USA</td>
<td>3</td>
<td>MIT</td>
<td>0.68</td>
<td>M</td>
<td>a propeller</td>
<td>gasoline</td>
</tr>
<tr>
<td>Autocat</td>
<td>2000</td>
<td>USA</td>
<td>1.22</td>
<td>MIT</td>
<td>0.61</td>
<td>M</td>
<td>two propellers</td>
<td>batteries</td>
</tr>
<tr>
<td>MESSIN</td>
<td>2000</td>
<td>Germany</td>
<td>0.4</td>
<td>FIT</td>
<td>1.2</td>
<td>M</td>
<td>a propeller</td>
<td>gasoline</td>
</tr>
<tr>
<td>SCOUT</td>
<td>2003</td>
<td>USA</td>
<td>8.1</td>
<td>FAU</td>
<td>2.6</td>
<td>M</td>
<td>a propeller</td>
<td>gasoline</td>
</tr>
<tr>
<td>Charlie</td>
<td>2005</td>
<td>Italy</td>
<td>2.4</td>
<td>CNR-IST</td>
<td>2.8</td>
<td>M</td>
<td>two propellers</td>
<td>solar</td>
</tr>
<tr>
<td>OASIS</td>
<td>2006</td>
<td>USA</td>
<td>3.48</td>
<td>CH</td>
<td>1.52</td>
<td>M</td>
<td>propeller</td>
<td>solar</td>
</tr>
<tr>
<td>Springer</td>
<td>2006</td>
<td>USA</td>
<td>2.1</td>
<td>UC</td>
<td>3.3</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
<tr>
<td>Fast</td>
<td>2008</td>
<td>Portugal</td>
<td>2.5</td>
<td>University of Porto</td>
<td>0.67</td>
<td>M</td>
<td>two thrusters</td>
<td>wind, solar</td>
</tr>
<tr>
<td>ALANIS</td>
<td>2009</td>
<td>Italy</td>
<td>4.5</td>
<td>CNR-ESMA</td>
<td>2.2</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
<tr>
<td>ASV</td>
<td>2009</td>
<td>China</td>
<td>2.7</td>
<td>SMU</td>
<td>1.48</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
<tr>
<td>Nereus</td>
<td>2009</td>
<td>USA</td>
<td>1.7</td>
<td>FAU</td>
<td>0.21</td>
<td>M</td>
<td>four propellers</td>
<td>batteries</td>
</tr>
<tr>
<td>Wave Glider</td>
<td>2009</td>
<td>USA</td>
<td>2.1</td>
<td>Liquid Robotics</td>
<td>0.6</td>
<td>M</td>
<td>wave energy converter</td>
<td>wave energy</td>
</tr>
<tr>
<td>WASP</td>
<td>2009</td>
<td>USA</td>
<td>4.2</td>
<td>UMAMI</td>
<td>0.8</td>
<td>M</td>
<td>wave energy converter</td>
<td>wave energy</td>
</tr>
<tr>
<td>ASV</td>
<td>2010</td>
<td>USA</td>
<td>2.1</td>
<td>USC</td>
<td>0.7</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
<tr>
<td>SOTOB II</td>
<td>2012</td>
<td>Japan</td>
<td>2.64</td>
<td>University of Coimbra</td>
<td>0.76</td>
<td>M</td>
<td>a sail</td>
<td>wind, solar</td>
</tr>
<tr>
<td>ASC</td>
<td>2013</td>
<td>Canada</td>
<td>1.5</td>
<td>MUN</td>
<td>1.146</td>
<td>M</td>
<td>two motors</td>
<td>solar</td>
</tr>
<tr>
<td>Squirtle</td>
<td>2013</td>
<td>Portugal</td>
<td>1.5</td>
<td>University of Coimbra</td>
<td>1.146</td>
<td>M</td>
<td>two motors</td>
<td>solar</td>
</tr>
<tr>
<td>ASB</td>
<td>2013</td>
<td>France</td>
<td>3.35</td>
<td>EPFL</td>
<td>5.5</td>
<td>M</td>
<td>a sail</td>
<td>waterjet, gasoline</td>
</tr>
<tr>
<td>HydroNet</td>
<td>2014</td>
<td>Italy</td>
<td>1.99</td>
<td>SSU</td>
<td>8.28</td>
<td>M</td>
<td>two propellers</td>
<td>batteries</td>
</tr>
<tr>
<td>SMIS-USV</td>
<td>2015</td>
<td>Germany</td>
<td>1.33</td>
<td>University of Rostock</td>
<td>0.33</td>
<td>M</td>
<td>two propellers</td>
<td>batteries</td>
</tr>
<tr>
<td>mini-USV</td>
<td>2016</td>
<td>China</td>
<td>1.33</td>
<td>HUST</td>
<td>5.1</td>
<td>M</td>
<td>propeller</td>
<td></td>
</tr>
<tr>
<td>BUSCAMOSI</td>
<td>2016</td>
<td>Spain</td>
<td>5.1</td>
<td>UIC</td>
<td>1.97</td>
<td>M</td>
<td>two propellers</td>
<td>solar, diesel</td>
</tr>
<tr>
<td>USV</td>
<td>2016</td>
<td>Spain</td>
<td>1.7</td>
<td>UB</td>
<td>1.36</td>
<td>M</td>
<td>two motors</td>
<td></td>
</tr>
<tr>
<td>ASV</td>
<td>2016</td>
<td>Malaysia</td>
<td>0.4</td>
<td>USM</td>
<td>0.4</td>
<td>M</td>
<td>two propellers</td>
<td>batteries</td>
</tr>
<tr>
<td>USV</td>
<td>2016</td>
<td>China</td>
<td>2.8</td>
<td>SPA CAS</td>
<td>0.7</td>
<td>M</td>
<td>waterjet</td>
<td></td>
</tr>
<tr>
<td>UCAP</td>
<td>2016</td>
<td>Portugal</td>
<td>1.5</td>
<td>INESC TEC</td>
<td>2.1</td>
<td>M</td>
<td>waterjet</td>
<td></td>
</tr>
<tr>
<td>PhaDyPos</td>
<td>2017</td>
<td>Croatia</td>
<td>1.5</td>
<td>University of Zagreb</td>
<td>30</td>
<td>M</td>
<td>four thrusters</td>
<td></td>
</tr>
<tr>
<td>JingHai-I</td>
<td>2017</td>
<td>China</td>
<td>6.28</td>
<td>University of Shanghai</td>
<td>2.86</td>
<td>M</td>
<td>waterjet</td>
<td>diesel</td>
</tr>
<tr>
<td>USV</td>
<td>2017</td>
<td>China</td>
<td>1.9</td>
<td>BIT</td>
<td>0.4</td>
<td>M</td>
<td>a sail, two thrusters</td>
<td>solar, wind</td>
</tr>
<tr>
<td>Roboat</td>
<td>2018</td>
<td>USA</td>
<td>0.9</td>
<td>MIT</td>
<td>0.45</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
<tr>
<td>Jetskins</td>
<td>2019</td>
<td>France</td>
<td>1.8</td>
<td>University of Rennes</td>
<td>0.66</td>
<td>M</td>
<td>four motors</td>
<td></td>
</tr>
<tr>
<td>R2O4</td>
<td>2019</td>
<td>Philippines</td>
<td>1.3</td>
<td>CASU</td>
<td>0.5</td>
<td>M</td>
<td>propeller</td>
<td></td>
</tr>
<tr>
<td>Catabot</td>
<td>2020</td>
<td>USA</td>
<td>2.4</td>
<td>Dartmouth College</td>
<td>1.4</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
<tr>
<td>ANY</td>
<td>2020</td>
<td>Korea</td>
<td>4.4</td>
<td>KRISO</td>
<td>2.4</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
<tr>
<td>VIM-USV-2000</td>
<td>2021</td>
<td>Vietnam</td>
<td>2</td>
<td>HCMU1</td>
<td>1.69</td>
<td>M</td>
<td>two thrusters</td>
<td>batteries</td>
</tr>
</tbody>
</table>

Note: 1. Because all the prototypes have power supplied by batteries, “batteries” here denotes batteries are the only power.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(m)</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>W(m)</td>
<td>Width</td>
<td></td>
</tr>
<tr>
<td>Wtl(kg)</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Sp(m/s)</td>
<td>Speed</td>
<td></td>
</tr>
<tr>
<td>En</td>
<td>Endurance</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>Applications</td>
<td></td>
</tr>
</tbody>
</table>

Dimension: L: Length, W: Width, Type: M: Monohull, C: Catamaran, Parameter: Sp: Speed, Wt: Weight, En: Endurance
REFERENCES

