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This paper attempts to identify the requirement and the development of machine learning-based mobile big data (MBD) analysis
through discussing the insights of challenges in the mobile big data. Furthermore, it reviews the state-of-the-art applications of data
analysis in the area of MBD. Firstly, we introduce the development of MBD. Secondly, the frequently applied data analysis methods
are reviewed. Three typical applications of MBD analysis, namely, wireless channel modeling, human online and offline behavior
analysis, and speech recognition in the Internet of Vehicles, are introduced, respectively. Finally, we summarize the main challenges

and future development directions of mobile big data analysis.

1. Introduction

With the success of wireless local access network (WLAN)
technology (a.k.a. Wi-Fi) and the second/third/fourth gen-
eration (2G/3G/4G) mobile network, the number of mobile
phones, which is 774 billion, 103.5 per 100 inhabitants all
over the world in 2017, is rising dramatically [1]. Nowadays,
mobile phone can not only send voice and text messages, but
also easily and conveniently access the Internet which has
been recognized as the most revolutionary development of
mobile Internet (M-Internet). Meanwhile, worldwide active
mobile-broadband subscriptions in 2017 have increased to
4.22 billion, which is 9.21% higher than that in 2016 [1].
Figure 1 shows the numbers of mobile-cellular telephone
and active mobile-broadband subscriptions of the world and
main districts from 2010 to 2017. The numbers which are
up to the bars are the mobile-cellular telephone or active
mobile-broadband subscriptions (million) in the world of
the year which increase each year. Under the M-Internet,
various kinds of content (image, voice, video, etc.) can be sent
and received everywhere and the related applications emerge
to satisfy people’s requirements, including working, study,

daily life, entertainment, education, and healthcare. In China,
mobile applications giants, i.e., Baidu, Alibaba, and Tencent,
held 78% of M-Internet online time per day in apps which
was about 2,412 minutes in 2017 [2]. This figure indicates that
M-Internet has entered a rapid growth stage.

Nowadays, more than 1 billion smartphones are in use
and producing a great quantity of data every day. This
situation brings far-reaching impacts on society and social
interaction and increases great opportunities for business.
Meanwhile, with the rapid development of the Internet-of-
Things (IoT), much more data is automatically generated
by millions of machine nodes with growing mobility, for
example, sensors carried by moving objects or vehicles. The
volume, velocity, and variety of these data are increasing
extremely fast, and soon they will become the new criterion
for data analytics of enterprises and researchers. Therefore,
mobile big data (MBD) has been already in our lives and is
being enriched rapidly. The trend for explosively increased
data volume with the increasing bandwidth and data rate in
the M-Internet has followed the same exponential increase
as Moore’s Law for semiconductors [3]. The prediction [2]
about the global data volume will grow up to 47 zettabytes
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FIGURE 1: Mobile-cellular telephone subscriptions (million) in (a) and active mobile-broadband subscriptions (million) in (b) of the world

and main districts [1].

(1 zettabyte = 1 x 10*' bytes) by 2020 and 163 zettabytes
by 2025. For M-Internet, 3.7 exabytes (1 exabyte = 1 x
10"® bytes) data have been generated per month from the
mobile data traffic in 2015 [4], 7.2 exabytes in 2016 [5], 24
exabytes by 2019 on forecasting [5], and 49 exabytes by 2021
on forecasting [5]. According to the statistical and prediction
results, a concept called MBD has appeared.

The MBD can be considered as a huge quantity of mobile
data which are generated from a massive number of mobile
devices and cannot be processed and analyzed by a single
machine [6, 7]. MBD is playing and will play a more impor-
tant role than ever before by the popularization of mobile
devices including smartphones and IoT gadgets especially in
the era of 4G and the forthcoming the fifth generation (5G)
(4, 8].

With the rapid development of information technologies,
various data generated from different technical fields are
showing explosive growth trends [9]. Big data has broad
application prospects in many fields and has become impor-
tant national strategic resources [10]. In the era of big data,
many data analysis systems are facing big challenges as the
volume of data increases. Therefore, analysis for MBD is
currently a highly focused topic. The importance of MBD
analysis is determined by its role in developing complex
mobile systems which supports a variety of intelligently inter-
active services, for example, healthcare, intelligent energy
networks, smart buildings, and online entertainments [4].
MBD analysis can be defined as mining terabyte-level or
petabyte-level data collected from mobile users and wireless
devices at the network-level or the app-level to discover
unknown, latent, and meaningful patterns and knowledge
with large-scale machine learning methods [11].

Present requirements of MBD are based on software-
defined in order to be more scalable and flexible. M-Internet
environment in the future will be even more complex and
interconnected [12]. For this purpose, data centers of MBD
need to collect user statistics information of millions of users

and obtain meaningful results by proper MBD analysis meth-
ods. For the decreasing price of data storage and widely acces-
sible high performance computers, an expansion of machine
learning has come into not only theoretical researches, but
also various application areas of big data. Even though, there
is a long way to go for the machine learning-based MBD
analysis.

Machine learning technology has been used by many
Internet companies in their services: from web searches [13,
14] to content filtering [15] and recommendation [16, 17] on
online social communities, shopping websites, or contend
distribution platforms. Furthermore, it is also frequently
appearing in products like smart cellphones, laptop comput-
ers, and smart furniture. Machine learning systems are used
to detect and classify objects, return most relevant searching
results, understand voice commands, and analyze using
habits. In recent years, big data machine learning has become
ahot spot [18]. Some conventional machine learning methods
based on Bayesian framework [19-22], distributed optimiza-
tion [23-26], and matrix factorization [27] can be applied into
the aforementioned applications and have obtained good per-
formances in small data sets. On this foundation, researchers
have always been trying to fill their machine learning model
with more and more data [28]. Furthermore, the data we
got is not only big but also has features such as multisource,
dynamic and sparse value; these features make it harder to
analyze MBD with conventional machine learning methods.
Therefore, the aforementioned applications implemented
with conventional machine learning methods have fallen
in a bottleneck period for low accuracy and generalization.
Recently, a class of novel techniques, called deep learning,
is applied in order to make the effort to solve the problems
and has obtained good performances [29]. Machine learning,
especially deep learning, has been an essential technique in
order to use big data effectively.

Most conventional machine learning methods are shal-
low learning structures with one or none hidden layers.
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These methods performed well in practical use and were
precisely analyzed theoretically. But when dealing with high-
dimensional or complicated data, shallow machine learning
methods show their weakness. Deep learning methods are
developed to learn better representations automatically with
deep structure by using supervised or unsupervised strategies
[30, 31]. The features extracted by deep hidden layers are used
for regression, classification, or visualization. Deep learning
uses more hidden layers and parameters to fit functions
which could extract high level features from complex data;
the parameters will be set automatically using large amount of
unsupervised data [32, 33]. The hidden layers of deep learning
algorithms help the model learn better representation of data;
the higher layers learn specific and abstract features from
global features learned by lower layers. Many surveys show
that nonlinear feature extractors that are linked up as stacks
such as deep learning methods always perform better in
machine learning tasks, for example, a more accurate clas-
sification method [34], better learning of data probabilistic
models [35], and the extraction of robust features [36]. Deep
learning methods have proved useful in data mining, natural
language processing, and computer vison applications. A
more detailed introduction of deep learning is presented in
Section 3.1.4.

Artificial Intelligence (AI) is a technology that develops
theories, methods, techniques, and applications that simulate
or extend human brain abilities. The research of observ-
ing, learning, and decision-making process in human brain
motivates the development of deep learning, which was
first designed aiming to emulate the human brain’s neural
structures. Further observation on neural signals processing
and the effect on brain mechanisms [37-39] inspired the
architecture design of deep learning network, using layers
and neuron connections to generalize globally. Conventional
methods such as support vector machines, decision trees, and
case-based reasoning which are based on statistics or logic
knowledge of human may fall short when facing complex
structure or relationships of data. Deep learning methods
can learn patterns and relationships from hidden layers and
may benefit the signal processing study in human brain
with visualization methods of neural network. Deep learning
has attracted much attention from Al researchers recently
because of its state-of-the-art performance in machine learn-
ing domains including no only the aforementioned natural
language processing (NLP), but also speech recognition [40,
41], collaborative filtering [42], and computer vision [43, 44].

Deep learning has been successfully used in industry
products which have access to big data from users. Com-
panies in United States such as Google, Apple, Facebook,
and Chinese companies like Baidu, Alibaba, and Tencent
have been collecting and analyzing data from millions of
users and pushing forward deep learning based applications.
For example, Tencent YouTu Lab has developed identifica-
tion (ID) card identification and bank card identification
systems. These systems can read information from card
images to check user information while registering and bank
information while purchasing. The identification systems are
based on deep learning model and large volume of user
data provided by Tencent. Apple develops Siri, a virtual

intelligent assistant in iPhones, to answer questions about
weather, location, news according to voice commands and
dial numbers or send text messages. Siri also utilizes deep
learning methods and uses data from apple services [45].
Google uses deep learning on Google translation service with
massive data collected by Google search engine.

MBD contains a large variety of information of offline
data and online real-time data stream generated from smart
mobile terminals, sensors, and services and hastens various
applications based on the advancement of data analysis tech-
nologies, such as collaborative filtering-based recommenda-
tion [46, 47], user social behavior characteristics analysis
[48-51], vehicle communications in the Internet of Vehicles
(IoV) [52], online smart healthcare [53], and city residents’
activity analysis [6]. Although the machine learning-based
methods are widely applied in the MBD fields and obtain
good performances in real data test, the present methods still
need to be further developed. Therefore, five main challenges
facing MBD analysis regarding the machine learning-based
methods include large-scale and high-speed M-Internet,
overfitting and underfitting problems, generalization prob-
lem, cross-modal learning, and extended channel dimensions
and should be considered.

This paper attempts to identify the requirement and the
development of machine learning-based mobile big data
analysis through discussing the insights of challenges in
the MBD and reviewing state-of-the-art applications of data
analysis in the area of MBD. The remainder of the paper is
organized as follows. Section 2 introduces the development
of data collection and properties of MBD. The frequently
adopted methods of data analysis and typical applications
are reviewed in Section 3. Section 4 summarizes the future
challenges of MBD analysis and provides suggestions.

2. Development and Collection of
the Mobile Big Data

2.1. Data Collection. Data collection is the foundation of
a data processing and analysis system. Data are collected
from mobile smart terminals and Internet services, or
called mobile Internet devices (MIDs) generally, which are
multimedia-capable mobile devices providing wireless Inter-
net access and contain smartphones, wearable computers,
laptop computers, wireless sensors, etc. [54].

MBD can be divided into two hierarchical data form:
transmission and application data, from bottom to top. The
transmission data focus on solving channel modeling [55,
56] and user access problems corresponding to the physical
transmission system of M-Internet. On this foundation,
application data focus on the applications based on the MBD
including social networks analysis [57-59], user behavior
analysis [48, 50, 60], speech analysis and decision in IoV [61-
66], smart grid [67, 68], networked healthcare [53, 69, 70],
finance services [46, 71], etc.

Due to the heterogeneity of the M-Internet and the variety
of the access devices, the collected data are unstructured and
usually in many categories and formats, which make data
preprocessing become an essential part of a data processing
and analysis system in order to ensure the input data complete
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FIGURE 2: The procedures of data collection and preprocessing.

and reliable [72]. Data preprocessing can be divided into three
steps which are data cleaning, generation of implicit ratings,
and data integration [46].

(1) Data Cleaning. Due to possible equipment failures, trans-
mission errors, or human factor, raw data are “dirty data”
which cannot be directly used, generally [46]. Therefore, data
cleaning methods including outlier detection and denoising
are applied in the data preprocessing to obtain the data meet
required quality. Manual removal of error data is difficult and
impossible to accomplish in MBD due to the massive volume.
Common data cleaning methods can alleviate the dirty data
problem to some extent by training support vector regression
(SVR) classifiers [73], multiple linear regression models [74],
autoencoder [75], Bayesian methods [76-78], unsupervised
methods [79], or information-theoretic models [79].

(2) Generation of Implicit Ratings. Generation of implicit
ratings is mainly applied in recommend systems. The volume
of rating data increases rapidly by analyzing specific user
behaviors to solve data sparsity problem with machine learn-
ing algorithms, for example, neural networks and decision
trees [46].

(3) Data Integration. Data integration is a step to integrate
data from different resources with different formats and
categories and to handle missing data fields [7].

Figure 2 represents the procedures of data collection and
preprocessing.

2.2. Properties of Mobile Big Data. The MBD brings a massive
amount of new challenges to conventional data analysis
methods for its high dimensionality, heterogeneity, and
other complex features from applications, such as planning,
operation and maintenance, optimization, and marketing
[57]. This section discusses the five Vs (short for volume,
velocity, variety, value, and veracity) features [80] deriving
from big data towards the MBD. The five Vs features have
been improved in M-Internet, while it makes users access
Internet anytime and anywhere [81].

(1) Volume: Large Number of MIDs, Exabyte-Level Data, and
High-Dimensional Data Space. Volume is the most obvious

feature of MBD. In the forthcoming 5G network and the
era of MBD, conventional store and analysis methods are
incapable of processing the 1000x or more wireless traffic
volume [7, 82]. It is of great urgency to improve present
MBD analysis methods and propose new ones. The methods
should be simple and cost-effective to be implemented for
MBD processing and analysis. Moreover, they should also be
effective enough without requiring a massive amount of data
for model training. Finally, they are precise to be applied in
various fields [81].

(2) Velocity: Real-Time Data Streams and Efficiency Require-
ment. Velocity can be considered as the speed at which
data are transmitted and analyzed [83]. The data is now
continuously streaming into the servers in real-time and
makes the original batch process break down [84]. Due to
the high generating rate of MBD, velocity is the efficiency
requirement of MBD analysis since real-time data processing
and analysis are extremely important in order to maximize
the value of MBD streams [7].

(3) Variety: Heterogeneous and Nonstructured Mobile Mul-
timedia Contents. Due to the heterogeneity of MBD which
means that mobile data traffic comes from spatially dis-
tributed data resources (i.e., MIDs), the variety of MBD
arises and makes the MBD more complex [4]. Meanwhile,
the nonstructured MBD also causes the variety. The MBD
can be divided into structured data, semistructured data,
and unstructured data. Here, unstructured data are usually
collected in new applications and have random data fields and
contents [7]; therefore, they are difficult to analyze before data
cleaning and integration.

(4) Value: Mining Hidden Knowledge and Patterns from Low
Density Value Data. Value, or low density value of MBD, is
caused by a large amount of useless or repeated information
in the MBD. Therefore, we need to mine the big value by
MBD analyzing which is hidden knowledge and patterns
extraction. The purified data can provide comprehensive
information to conduct more effectively analysis results about
user demands, user behaviors, and user habits [85] and
to achieve better system management and more accurate
demand prediction and decision-making [86].
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(5) Veracity: Consistency, Trustworthiness, and Security of
MBD. The veracity of MBD includes two parts: data consis-
tency and trustworthiness [80]. It can also be summarized as
data quality. MBD quality is not guaranteed due to the noise
of transmission channel, the equipment malfunctioning,
and the uncalibrated sensors of MIDs or the human factor
(for instance, malicious invasion) resulting in low-quality
data points [4]. Veracity of MBD ensures that the data
used in analysis process are authentic and protected from
unauthorized access and modification [80].

3. Applications of Machine Learning
Methods in the Mobile Big Data Analysis

3.1. Development of Data Analysis Methods. In this section,
we present some recent achievements in data analysis from
four different perspectives.

3.1.1. Divide-and-Conquer Strategy and Sampling of Big Data.
The strategies dividing and conquering big data is a com-
puting paradigm dealing with big data problems. The devel-
opment of distributed and parallel computing makes divide-
and-conquer strategy particularly important.

Generally speaking, whether the diversity of samples in
learning data benefits the training results varies. Some redun-
dant and noisy data can cause a large amount of storage cost
as well as reducing the efficiency of the learning algorithm
and affecting the learning accuracy. Therefore, it is more
preferable to select representative samples to form a subset
of original sample space according to a certain performance
standard, such as maintaining the distribution of samples,
topological structure, and keeping classification accuracy.
Then learning method will be constructed on previous
formed subset to finish the learning task. In this way, we can
maintain or even improve the performance of big data analyz-
ingalgorithm with minimum computing and stock resources.
The need to learn with big data demands on sample selection
methods. But most of the sample selection method is only
suitable for smaller data sets, such as the traditional con-
densed nearest neighbor [93], the reduced nearest neighbor
[94], and the edited nearest neighbor [95]; the core concept
of these methods is to find the minimum consistent subset.
To find the minimum consistent subset, we need to test every
sample and the result is very sensitive to the initialization of
the subset and samples setting order. Li et al. [96] proposed
a method to select the classification and edge boundary
samples based on local geometry and probability distribution.
They keep the space information of the original data but
need to calculate k-means for each sample. Angiulli et al. [97,
98] proposed a fast condensation nearest neighbor (FCNN)
algorithm based on condensed nearest neighbor, which tends
to choose the classification boundary samples.

Jordan [99] proposed statistical inference method for big
data. When dealing with statistical inference with divide-
and-conquer algorithm, we need to get confidence intervals
from huge data sets. By data resampling and then calculating
confidence interval, the Bootstrap theory aims to obtain the
fluctuation of the evaluation value. But it does not fit big
data. The incomplete sampling of data can lead to erroneous

range fluctuations. Data sampling should be correct in order
to provide statistical inference calibration. An algorithm
named Bag of Little Bootstraps was proposed, which can
not only avoid this problem, but also has many advantages
on computation. Another problem discussed in [99] is
massive matrix calculation. The divide-and-conquer strategy
is heuristic, which has a good effect in practical application.
However, new theoretical problems arise when trying to
describe the statistical properties of partition algorithm. To
this end, the support concentration theorem based on the
theory of random matrices has been proposed.

In conclusion, data partition and parallel processing
strategy is the basic strategy to deal with big data. But the
current partition and parallel processing strategy uses little
data distribution knowledge, which has influence on the
load balancing and the calculation efficiency of big data
processing. Hence, there exists an urgent requirement to solve
the problem about how to learn the distribution of big data for
the optimization of load balancing.

3.1.2. Feature Selection of Big Data. In the field of data mining,
such as document classification and indexing, the dataset is
always large, which contains a large number of records and
features. This leads to the low efficiency of algorithm. By
feature selection, we can eliminate the irrelevant features and
increase the speed of task analysis. Thus, we can get a better
preformed model with less running time.

Big data processing faces a huge challenge on how to
deal with high-dimensional and sparse data. Traffic network,
smartphone communication records, and information shared
on Internet provide a large number of high-dimensional
data, using tensor (such as a multidimensional array) as
natural representation. Tensor decomposition, in this condi-
tion, becomes an important tool for summary and analysis.
Kolda [100] proposed an efficient use of the memory of the
Tucker decomposition method named as memory-efficient
Tucker (MET) decomposition decreasing time and space cost
which traditional tensor decomposition algorithm cannot do.
MET adaptively selects execution strategy based on available
memory in the process of decomposition. The algorithm
maximizes the speed of computation in the premise of using
the available memory. MET avoid dealing with the large
number of sporadic intermediate results proceeded during
the calculation process. The adaptive selections of operation
sequence not only eliminate the intermediate overflow prob-
lem, but also save memory without reducing the precision.
On the other hand, Wahba [101] proposed two approaches to
the statistical machine learning model which involve discrete,
noisy, and incomplete data. These two methods are regular-
ized kernel estimation (RKE) and robust manifold unfolding
(RMU). These methods use dissimilarity between training
information to get nonnegative low rank definite matrix.
The matrix will then be embedded into a low dimensional
Euclidean space, which coordinate can be used as features
of various learning modes. Similarly, most online learning
research needs to access all features of training instances.
Such classic scenario is not always suitable for practical
applications when facing high-dimensional data instances or
expensive feature sets. In order to break through this limit,



Hoi et al. [102] propose an efficient algorithm to predict
online feature solving problem using some active features
based on their study of sparse regularization and truncation
technique. They also test the proposed algorithm in some
public data sets for feature selection performance.

The traditional self-organizing map (SOM) can be used
for feature extraction. But the low speed of SOM limits its
usage on large data sets. Sagheer [103] proposed a fast self-
organizing map (FSOM) to solve this problem. The goal of
this method is to find a feature space where data is mainly
distributed in. If there exits such area, data can be extracted
in these areas instead of information extraction in overall
feature spaces. In this way, we can greatly reduce extraction
time.

Anaraki [104] proposed a threshold method of fuzzy
rough set feature selection based on fuzzy lower approxima-
tion. This method adds a threshold to limit the QuickReduct
feature selection. The results of the experiment prove that this
method can also help the accuracy of feature extraction with
lower running time.

Gheyas et al. [105] proposed a hybrid algorithm of sim-
ulated annealing and genetic algorithm (SAGA), combining
the advantages of simulated annealing algorithm, genetic
algorithm, greedy algorithm, and neural network algorithm,
to solve the NP-hard problem of selecting optimal feature
subset. The experiment shows that this algorithm can find
better optimal feature subset, reducing the time cost sharply.
Gheyas pointed in as conclusion that there is seldom a single
algorithm which can solve all the problems; the combination
of algorithms can effectively raise the overall affect.

To sum up, because of the complexity, high dimen-
sionality, and uncertain characteristics of big data, it is an
urgent problem to solve how to reduce the difficulty of big
data processing by using dimension reduction and feature
selection technology.

3.1.3. Big Data Classification. Supervised learning (classifi-
cation) faces a new challenge of how to deal with big data.
Currently, classification problems involving large-scale data
are ubiquitous, but the traditional classification algorithms do
not fit big data processing properly.

(1) Support Vector Machine (SVM). Traditional statistical
machine learning method has two main problems when
facing big data. (1) Traditional statistical machine learning
methods are always involving intensive computing which
makes it hard to apply on big data sets. (2) The prediction
of model that fits the robust and nonparameter confidence
interval is unknown. Lau et al. [106] proposed an online
support vector machine (SVM) learning algorithm to deal
with the classification problem for sequentially provided
input data. The classification algorithm is faster, with less
support vectors, and has better generalization ability. Laskov
et al. [107] proposed a rapid, stable, and robust numerical
incremental support vector machine learning method. Chang
etal. [108] developed an open source package called LIBSVM
as a library for SVM code implementation.

In addition, Huang et al. [109] present a large margin
classifier M4. Unlike other large margin classifiers which
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locally or globally constructed separation hyperplane, this
model can learn both local and global decision bound-
ary. SVM and minimax probability machine (MPM) has a
close connection with the model. The model has important
theoretical significance and furthermore, the optimization
problem of maxi-min margin machine (M*) can be solved in
polynomial time.

(2) Decision Tree (DT). Traditional decision tree (DT), as a
classic classification learning algorithm, has a large memory
requirement problem when processing big data. Franco-
Arcega et al. [110] put forward a method of constructing DT
from big data, which overcomes some weakness of algorithms
in use. Furthermore, it can use all training data without
saving them in memory. Experimental results showed that
this method is faster than current decision tree algorithm
on large-scale problems. Yang et al. [111] proposed a fast
incremental optimization decision tree algorithm for large
data processing with noise. Compared with former deci-
sion tree data mining algorithm, this method has a major
advantage on real-time speed for data mining, which is quite
suitable when dealing with continuous data from mobile
devices. The most valuable feature of this model is that it
can prevent explosive growth of the decision tree size and
the decrease of prediction accuracy when the data packet
contains noise. The model can generate compact decision tree
and predict accuracy even with highly noisy data. Ben-Haim
etal. [112] proposed an algorithm of building parallel decision
tree classifier. The algorithm runs in distributed environment
and is suitable for large amount and streaming data. Com-
pared with serial decision tree, the algorithm can improve
efficiency under the premise of accuracy error approxima-
tion.

(3) Neural Network and Extreme Learning Machine (ELM).
Traditional feedforward neural networks usually use gradient
descent algorithm to tune weight parameters. Generally
speaking, slow learning speed and poor generalization per-
formance are the bottlenecks that restrict the application of
feedforward neural network. Huang et al. [113] discarded the
iterative adjustment strategy of the gradient descent algo-
rithm and proposed extreme learning machine (ELM). This
method randomly assigns the input weights and the devia-
tions of the single hidden layer neural network. It can analyze
the output weights of the network by one step calculation.
Compared to the traditional feedforward neural network
training algorithm, the network weights can be determined
by multiple iterations, and the training speed of ELM is
significantly improved.

However, due to the limitation of computing resource and
computational complexity, it is a difficult problem to train a
single ELM on big data. There are usually two ways to solve
this problem: (1) training ELM [114] based with divide-and-
conquer strategy; (2) introducing parallel mechanism [115]
to train a single ELM. It is shown in [116, 117] that a single
ELM has strong function approximation ability. Whether it
is possible to extend this approximation capability to ELM
based on divide-and-conquer strategy is a key index to
evaluate the possibility that ELM can be applied to big data.
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Some of the related studies also include effective learning to
solve such problem [118].

In summary, the traditional classification method of
machine learning is difficult to apply to the analysis of big
data directly. The study of parallel or improved strategies
of different classification algorithms has become the new
direction.

3.1.4. Big Data Deep Learning. With the unprecedentedly
large and rapidly growing volumes of data, it is hard for
us to get hidden information from big data with ordinary
machine learning methods. The shallow-structured learning
architectures of most conventional learning methods are not
fit for the complex structures and relationships in these
input data. Big data deep learning algorithm, with its deep
architectures and globally feature extracting ability, can learn
complex patterns and hidden connections beyond big data
[37, 119]. It has had state-of-the-art performances in many
benchmarks and also been applied in industry products. In
this section, we will introduce some deep learning methods
in big data analytics.

Big data deep learning has some problems: (1) the hidden
layers of deep network make it difficult to learn from a given
data vector, (2) the gradient descent method for parameters
learning makes the initialization time increasing sharply as
the number of parameters arises, and (3) the approximations
at the deepest hidden layer may be poor. Hinton et al. [32]
proposed a deep architecture: deep belief network (DBN)
which can learn from both labeled and unlabeled data by
using unsupervised pretraining method to learn unlabeled
data distributions and a supervised fine-tune method to
construct the models, and solved part of the aforementioned
problems. Meanwhile, subsequent researches, for example,
[120], improved the DBN trying to solve the problems.

Convolutional neural network (CNN) [121] is another
popular deep learning network structure for big data ana-
lyzing. A CNN has three common features including local
receptive fields, shared weights, and spatial or temporal sub-
sampling, and two typical types of layers [122, 123]. Con-
volutional layers are key parts of CNN structure aiming to
extract features from image. Subsampling layers, which are
also called pooling layers, adjust outputs from convolutional
layer to get translation invariance. CNN is mainly applied
in computer vision field for big data, for example, image
classification [124, 125] and image segmentation [126].

Document (or textual) representation, also part of NLP,
is the basic method for information retrieval and important
to understand natural language. Document representation
finds specific or important information from the documents
by analyzing document structure and content. The unique
information could be document topic or a set of labels
highly related to the document. Shallow models for document
representation only focus on small part of the text and
get simple connection between words and sentences. Using
deep learning can get global representation of the document
because of its large receptive field and hidden layers which
could extract more meaningful information. The deep learn-
ing methods for document representation make it possible to
obtain features from high-dimensional textual data. Hinton

et al. [127] proposed deep generative model to learn binary
codes for documents which make documents easy to store
up. Socher et al. [128] proposed a recursive neural network on
analyzing natural language and contexts, achieving state-of-
the-art results on segmentation and understanding of natural
language processing. Kumer et al. [129] proposed recurrent
neural networks (RNN) which construct search space from
large amount of textual data.

With the rapid growth and complexity of academic and
industry data sets, how to train deep learning models with
large amount of parameters has been a major problem. The
works in [40, 41, 43, 130-133] proposed effective and sta-
ble parameter updating methods for training deep models.
Researchers focus on large-scale deep learning that can be
implemented in parallel including improved optimizers [131]
and new structures [121, 133-135].

In conclusion, big data deep learning methods are the
key methods of data mining. They use complex structure
to learn patterns from big data sets and multimodal data.
The development of data storage and computing technology
promotes the development of deep learning methods and
makes it easier to use in practical situations.

3.2. Wireless Channel Modeling. As is well known, wireless
communication transmits information through electromag-
netic waves between a transmitting antenna and a receiving
antenna, which is deemed as a wireless channel. In the past
few decades, the channel dimension has been extended to
space, time, and frequency, which means the channel prop-
erty is comprehensively discovered. Another development is
that channel characteristics can be accurately described by
different methods, such as channel modeling [136].

Liang et al. [137] used machine learning to predict
channel state information so as to decease the pilot overhead.
Especially for 5G, wireless big data emerges and its related
technologies are employed to traditional communication
research to meet the demand of 5G. However, the wireless
channel is essentially a physical electromagnetic wave, and
the current 5G channel model research follows the traditional
way. Zhang [138] proposed an interdisciplinary study of
big data and wireless channels, which is a cluster-based
channel model. In the cluster-nuclei based channel model,
the multipath components (MPCs) are aggregated into a
traditional stochastically channel model. At the same time,
the scene is discerned by the computer and the environment
is rebuilt by machine learning methods. Then, by matching
the real propagation objects with the clusters, the cluster-
nuclei, which are the key factors in contacting deterministic
environment and stochastic clusters, can be easily found.
There are two main steps employing the machine learning
methods in the cluster-nuclei based channel model. The
recent progress is shown as follows.

3.2.1. A Gaussian Mixture Model (GMM) Based Channel
MPCs Clustering Method. The MPCs are clustered with the
Gaussian mixture model (GMM) [87, 139]. Using sufficient
statistic characteristics of channel multipath, the GMM can
get clusters corresponding to the multipath propagation
characteristics. The GMM assumes that all the MPCs consist
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of several Gaussian distributions in varying proportions.
Given a set of N channel multipath X, the log-likelihood of
the Gaussian mixture model is

N K
L(X;0) = Z log Zﬂkp (; | 255 > Z4) > 1)

i=1 k=1

where ® = {m, 2, kK = 1,---,K} is the set of all the
parameters and 71, € [0, 1] is the prior probability satisfying
the constraint ZkK:I . = 1.'To estimate the GMM parameters,
expectation maximization (EM) algorithm is employed to
solve the log-likelihood function of GMM [87]. Figure 3
illustrates the simulation result of GMM clustering algorithm.

As seen in Figure 3, the GMM clustering obtains clearly
compact clusters. As scattering property of the channel
multipath obeys Gaussian distribution, the compact clusters
can accord with the multipath scattering property. Moreover,
corresponding to the clustering mechanism of GMM, paper
[87] proposed a compact index (CI) to evaluate the clustering
results shown as follows:

Cu®B)/K-1) (L,
“=rwie-x" (,;Sk>’ @

where S,f is the variance of the kth cluster and tr(B) and tr(W)
are given as

K

tr(B) = ¥ Ly« MCD (g,2)’, 3)
k=1
K 2

tr(W) =Y ) MCD(xq), (4)
k=1 jeC,

where L, is the number of multipaths corresponding to
the kth cluster. Both the means and variances of the clus-
ters are considered in CI. Considering sufficient statistics
characteristics, CI can uncover the inherent information of
multipath parameters and provide appropriate explanation to
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the clustering result. Besides, considering sufficient statistics
characteristics, the CI can evaluate the clustering results more
reasonably.

3.2.2. Identifying the Scatters with the Simultaneous Localiza-
tion and Mapping Algorithm (SLAM). In order to reconstruct
three-dimensional (3D) propagation environment and to find
the main deterministic objects, simultaneous localization and
mapping (SLAM) algorithm is used to identify the texture
from the measurement scenario picture [140, 141]. Figure 4
illustrates our indoor reconstruction result with SLAM algo-
rithm.

The texture of propagation environment can be used to
search for the main scatters in the propagation environment.
Then, the three-dimensional propagation environment can
be reconstructed with the deep learning method.

Then the mechanism to form the cluster-nuclei is clear.
The channel impulse response can be produced by machine
learning with a limited number of cluster-nuclei, i.e., decision
tree [142], neural network [143], and mixture model [144].
Based on the database from various scenarios, antenna
configurations, and frequency, channel changing rules can be
explored and then input into the cluster-nuclei based mod-
eling. Finally, the predication of channel impulse response in
various scenarios and configuration can be realized [138].

3.3. Analyses of Human Online and Offline Behavior Based
on Mobile Big Data. The advances of wireless networks and
increasing mobile applications bring about explosion of
mobile traffic data. It is a good source of knowledge to obtain
the individuals’ movement regularity and acquire the mobil-
ity dynamics of populations of millions [145]. Previous
researches have described how individuals visit geographical
locations and employed mobile traffic data to analyze human
oftline mobility patterns. Representative works like [146, 147]
explore the mobility of users in terms of the number of
base stations they visited, which turned out to be a heavy
tail distribution. Authors in [146, 148, 149] also reveal that
a few important locations are frequently visited by users.
In particular, these preferred locations are usually related to
home and work places. Moreover, through defining a measure
of entropy, Song et al. [150] believe that 93% of individual
movements are potentially predictable. Thus, various models
have been applied to describe the human offline mobility
behavior [151]. Passively collecting human mobile traffic data
while users are accessing the mobile Internet has many
advantages like low energy consumption. In general, the
mobile big data covers a wide range and a great number
of populations with fine time granularity, which gives us an
opportunity to study human mobility at a scale that other
data sources are very hard to reach [152]. Novel offline user
mobility models developed based on the mobile big data are
expected to benefit many fields, including urban planning,
road traffic engineering, telecommunication network con-
struction, and human sociology [145].

Online browsing behavior is another important facet
regarding user behavior when it comes to network resource
consumption. A variety of applications are now available
on smart devices, covering all aspects of our daily life and
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FIGURE 5: App usage behavior in daily life: (a) the app usage behavior of an individual and (b) app usage behavior of crowds at crowd gathering

places [50].

providing convenience. For example, we can order taxies,
shop, and book hotels using mobile phones. Yang et al.
[49] provide a comprehensive study on user behaviors in
exploiting the mobile Internet. It has been found that many
factors, such as data usage and mobility pattern, may impact
people’s online behavior on mobile devices. It is discovered
that the more the number of distinct cells a user visit, the
more diverse applications user has visited. Zheng et al. [153]
analyze the longitudinal impact of proximity density, per-
sonality, and location on smartphone traffic consumption. In
particular, location has been proven to have strong influences
on what kinds of apps users prefer to use [149, 153]. The
aforementioned observations point out that there is a close
relationship between online browsing behavior and oftline
mobility behavior.

Figure 5(a) is an example of how browsed applications
and current location related to each other from the view
of temporal and spatial regularity. It has been found that
the mobility behaviors have strong influences on online
browsing behavior [149, 153, 154]. Similar trends can also be
observed for crowds at crowd gathering places, as is shown
in Figure 5(b); i.e., certain apps are favored at places that

group people together and provide some specific functions.
The authors in [50] tried to measure the relationship between
human mobility and app usage behavior. In particular, the
authors proposed a rating framework which can forecast
the online app usage behavior for individuals and crowds.
Building the bridge between human offline mobility and
online mobile Internet behavior can tell us what people
really need in daily life. Content providers can leverage this
knowledge to appropriately recommend content for mobile
users. At the same time, Internet service providers (ISPs) can
use this knowledge to optimize networks for better end-user
experiences.

In order to make full use of users’ online and offline
information, some researchers begin to quantize the interplay
between online social network and offline social network
and investigate network dynamics from the view of mobile
traffic data [155-158]. Specifically, the online and offline
social networks are, respectively, constructed based on online
interest based and location based social network among
mobile users. The two different networks are grouped into
layers of a multilayer social network M = {G”",G%/}, as
shown in Figure 6. G/ and G*" depict offline and online
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FIGURE 6: Multilayer model of a network [88].

social network separately. In each layer, the graph is described
as G = (V,E), where V and E, respectively, represent node
sets and edge sets. Nodes, such as u,, ..., u,, represent users.
Edges exist among users when users share similar object-
based interests [88]. Combining information from manifold
networks in a multilayer structure provides a new insight
into user interactions between virtual and physical worlds.
It sheds light on the link generation process from multiple
views, which will improve social bootstrapping and friend
recommendations in various valuable applications by a large
margin [158].

So far, we have summarized some representative works
related to human online and offline behaviors. It is mean-
ingful to note that owing to the highly spatial-temporal and
nonhomogeneous nature of mobile traffic data, a pervasive
framework is challenging yet indispensable to realize the
collection, processing, and analyses of massive data, reducing
resource consumption and improving Quality of Experience
(QoE). The seminal work by Qiao et al. [60] proposes a frame-
work for MBD (FMBD). It provides comprehensive functions
on data collection, storage, processing, analyzing, and man-
agement to monitor and analyze the massive data. Figure 7(a)
displays the architecture of FMBD, while Figure 7(b) shows
the considered mobile networks framework. With the inter-
action between user equipment and 2G/3G/4G network,
real massive mobile data can be collected by traffic moni-
toring equipment (TME). The implementation modules are
employed based on Apache software [159]. FMBD builds
a security environment and easy-to-use platform both for
operators and data analysts, showing good performance on
energy efficiency, portability, extensibility, usability, security,
and stability. In order to meet the increasing demands on
traffic monitoring and analyzing, the framework provides a
solution to deal with large-scale mobile big data.

In conclusion, the prosperity of continuously emerg-
ing mobile applications and users’ increasing demands on
accessing Internet all bring about challenges for current and
future mobile networks. This section surveys the literature
on analyses of human online and offline behavior based
on the mobile traffic data. Moreover, a framework has also
been investigated, in order to meet the higher requirement
of dealing with dramatically increased mobile traffic data.
The analyses based on the big data will provide valuable
information for the ISPs on network deployment, resource
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management, and the design of future mobile network
architectures.

3.4. Speech Recognition and Verification for the Internet of
Vehicles. With the significant development of smart vehicle
produces, intelligent vehicle based Internet of Vehicle (IoV)
technologies have received widespread attention of many
giant Internet businesses [160-162]. The IoV technologies
include the communication between different vehicles and
vehicles to sensors, roads, and humans. These communica-
tions can help the IoV system sharing and the gathering
information on vehicles and their surrounds.

One of the challenges in the real-life applications of
smart vehicles and IoV systems is how to design a robust
interactive method between drivers and the IoV system
[163]. The level of focusing on driving will directly affect
the danger of driver and passengers; hence, the attention
of drivers should be paid on the complex road situation
in order to avoid accidents during an intense driving. So,
using the voices transfer information to the IoV systems is
an effective solution for assistant and cooperative driving.
By building a speech recognition interactive system, the
driver can check traffic jams near the destination or order
a lunch in the restaurant near the rest stop through the
IoV system by using voice-based interaction. The speech
recognition interactive system for IoV system can reduce
the risk of vehicle accident, and the drivers do not need to
touch the control panels or any buttons. A useful speech
recognition system in IoV can simplify the life of the drivers
and passengers in vehicles [164]. In the IoV system, drivers
want to use their own voice commands to control the driving
vehicles, and the IoV system must recognize the difference
between an authorized and unauthorized user. Therefore, an
automatic speaker verification system is necessary in IoV,
which can protect the vehicle from the imposters.

Recently, many deep learning methods have been applied
in the speech recognition and speaker verification systems
[41, 165-167], and published results show that speech pro-
cessing methods driven by MBD and deep learning can
obviously improve the performance of the existing speech
recognition and speaker verification system [40, 168, 169]. In
the IoV systems, millions of sensors collect abundant vehicles
and environmental noises from engines and streets will
significantly reduce the accuracy of speech processing system,
while the traditional speech enhancement methods, for
example, Wiener filtering [170] and minimum mean-square
error estimation (MMSE) [171] which focus on advancing
signal noise ratio (SNR), do not take full advantage of a
priori distribution of noises around vehicles. With the help
of machine learning and deep learning methods, we can use
a priori knowledge of the noises to improve the robustness of
speech processing systems.

For speech recognition task, deep-neural-network
(DNN) can be applied to train an effective monophone
classifier, instead of the traditional GMM based classifier.
Moreover, the deep-neural-network hidden Markov model
(DNN-HMM) speech recognition model can significantly
improve the performance of Gaussian mixture model hidden
Markov model (GMM-HMM) models [172-174]. As shown
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in Figure 8, making full use of the self-adaption power of
DNN, we can use the multitraining methods to improve
the robustness of DNN monophone classifier by adding
noise into the training data [89]. The experimental results
in [89, 175] show that the multitraining method can build a
matched training and testing condition which can improve
the accuracy of noisy speech recognition, especially for the
prior knowledge of noise types that we can easily obtain in
vehicles.

As shown in Figure 9, a DNN can also be used to train
a feature mapping network (FMN) which uses noisy features
as input and corresponding clean features as training target.
Enhanced features extracted by the FMN can improve the
performance of speech recognition systems. Han et al. [176]
used FMN to extract one enhanced Mel-frequency cepstral
coeflicient (MFCC) frame from 15 noisy MFCCs frames. Xu
et al. [90] built a FMN which learned the mapping from
a log spectrogram to a log Mel filter bank. The enhanced
feature can remarkably reduce the word error rate in speech
recognition.

Besides getting the mapping feature directly, the DNN can
also be used to train an ideal binary mask (IBM) which can be
used to separate the clean speech from background noise as
shown in Figure 10 [91, 177, 178]. With a priori knowledge of
noise types and SNR, we can generate IBMs as training targets
and use noisy power spectral as training data. In the test
phase, we can use the learned IBMs to get enhanced features
which can improve the robustness of speech recognition.

In speaker verification tasks, the classical GMM based
methods, for example, Gaussian mixture model universal
background model (GMM-UBM) [179] and i-vector systems
[180], need to build a background GMM, firstly, using a large
quantity of speaker independent speeches. Then, by comput-
ing the statistics information on each GMM component of
enrollment speakers, we can get speaker models or speaker i-
vectors. However, a trained monophone classification DNN
can replace the function of GMM by computing the statis-
tics information on each monophone instead of on GMM
components. Many published papers [181-184] show that the
DNN-i-vector based speaker verification systems work better
than the GMM-i-vector method on detection accuracy and
robustness.

Unlike in the speech recognition tasks where the DNNs
are used to get enhanced features from noisy features,
researchers more prefer to use a DNN or convolutional neural
network (CNN) to generate noise robustness bottleneck
feature directly in speaker verification tasks [185-187]. As
shown in Figure1l, acoustic features or feature maps are
used to train a DNN/CNN with a bottleneck layer which
has less nodes and closes to the output layer. Speaker ID,
noise types, monophone labels, or combination of these
labels are used as training targets. Outputs of bottleneck
layers include abundant differentiated information and can
be used as speaker verification features which improve the
performance of classical speaker verification methods such
as the aforementioned GMM-UBM and i-vector. Similar to
the multitraining method, adding noisy speeches into the
training data can also improve the robustness of extracted
bottleneck features [65, 92].

Recently, some adversarial training methods are intro-
duced to extract noise invariant bottleneck features [64, 188].
As shown in Figure 12, the adversarial network includes two
parts, i.e., an encoding network (EN) which can extract noise
invariant features and a discriminative network (DN) which
can judge noise types of the noise invariant feature generated
from EN. Therefore, we can get robustness noise invariant
features from EN which can improve the performance of
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speaker verification system by adversarial training these two
parts in turn [64, 188].

In conclusion, using DNN and machine learning meth-
ods can make full use of the MBD collected from the IoV
systems. Moreover, it improves the performance of speech
recognition and speaker verification methods applied in the
voice interactive systems.

4. Conclusions and Future Challenges

Although the machine learning-based methods introduced
in Section 3 are widely applied in the MBD fields and obtain

good performances in real data test, the present methods still
need to be further developed. Therefore, five main challenges
facing MBD analysis regarding the machine learning-based
methods should be considered as follows.

(1) Large-Scale and High-Speed M-Internet. Due to the growth
of MIDs and high speed of M-Internet, increasingly various
mobile data traffic is introduced and results in a heavy
load to the wireless transmission system, which leads us
to improve wireless communication technologies including
WLAN and cellular mobile communication. In addition, the
requirement of real-time services and applications depends
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on the development of machine learning-based MBD analysis
methods towards high efficiency and precision.

(2) Overfitting and Underfitting Problems. A benefit of MBD
to machine learning and deep learning lies in the fact that the
risk of overfitting becomes smaller with more and more data
available for training [28]. However, underfitting is another
problem for the oversize data volume. In this condition, a
larger model might be a better selection, while the model can
express more hidden information of the data. Nevertheless,
larger model which generally implies a deeper structure
increases runtime of the model which affects the real-time
performance. Therefore, the model size in machine learning
and deep learning, which represents number of parameters,
should be balanced to model performance and runtime.

(3) Generalization Problem. As the massive scale of MBD, it
is impossible to gain entire data even if they are only in a
specific field. Therefore, the generalization ability which can
be defined as suitable of different data subspace, or called
scalability, of a trained machine learning or deep learning
model is of great importance for evaluating the perform-
ance.

(4) Cross-Modal Learning. The variety of MBD causes multi-
ple modalities of data (for example, images, audios, personal
location, web documents, and temperature) generated from
multiple sensors (correspondingly, cameras, sound recorders,
position sensor, and temperature sensor). Multimodal learn-
ing should learn from multimodal and heterogeneous input
data with machine learning and deep learning [4, 189] and
obtain hidden knowledge and meaningful patterns; however,
it is quite difficult to discover.

(5) Extended Channel Dimensions. The channel dimensions
have been extended to three domains, i.e., space, time, and
frequency, which means that the channel property is com-
prehensively discovered. Meanwhile, the increasing antenna
number, high bandwidth, and various application scenarios
bring the big data of channel measurements and estimations,
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especially for 5G. The finding channel characteristics need to
be precisely described by more advanced channel modeling
methodologies.

In this paper, the applications and challenges of machine
learning-based MBD analysis in the M-Internet have been
reviewed and discussed. The development of MBD in various
application scenarios requires more advanced data analysis
technologies especially machine learning-based methods.
Three typical applications of MBD analysis focus on wireless
channel modeling, human online and offline behavior anal-
ysis, and speech recognition and verification in the Internet
of Vehicles, respectively, and the machine learning-based
methods used are widely applied in many other fields. In
order to meet the aforementioned future challenges, three
main study aims, i.e., accuracy, feasibility, and scalability [28],
are highlighted for present and future MBD analysis research.
In future work, accuracy improving will be also the primary
task on the basis of a feasible architecture for MBD anal-
ysis. In addition, as the aforementioned discussion of the
generalization problem, scalability has obtained more and
more attentions especially in a classification or recognition
problem where scalability also includes the increase in the
number of inferred classes. It is of great importance to
improve the scalability of the methods with the high accuracy
and feasibility in order to face the analysis requirements of
MBD.
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